Бета-окисление

История

β-Окисление было открыто в 1904 году немецким химиком Францем Кноопом (Franz Knoop) в опытах с кормлением собак различными жирными кислотами, в которых один атом водорода на концевом атоме ω-С углерода метильной группы -CH3 был замещен на фенильный радикал -С6H5.

Францем Кноопом было выдвинуто предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют чётное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Однако в то время механизмы окисления жирных кислот, происходящие при β-С атоме были ещё неизвестны. В 1948—1949 гг. Кеннеди и Ленинджер установили, что процесс окисления жирных кислот происходит в митохондриях. Ф. Линен с сотрудниками (1954—1958 гг.) описал основные ферментативные процессы окисления жирных кислот.

Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

Биохимия окисления жирных кислот в митохондриях

Для удобства процесс митохондриального катаболизма условно подразделяется на 3 этапа:

  • активация и транспортировка в митохондрии;
  • окисление;
  • окисление образовавшегося ацетил-коэнзима А через цикл Кребса и электротранспортную цепь.

Активация представляет собой подготовительный процесс, который переводит жирные кислоты в форму, доступную для биохимических превращений, так как сами по себе эти молекулы инертны. Кроме того, без активации они не могут проникнуть в мембраны митохондрий. Эта стадия протекает у внешней мембраны митохондрий.

Собственно, окисление — ключевой этап процесса. Оно включает четыре стадии, по окончании которых жирная кислота превращается в молекулы Ацетил-КоА. Тот же продукт образуется и при утилизации углеводов, так что дальнейшие этапы аналогичны последним стадиям аэробного гликолиза. Образование АТФ происходит в цепи переноса электронов, где энергия электрохимического потенциала используется для образования макроэргической связи.

В процессе окисления жирной кислоты кроме Ацетил-КоА образуются также молекулы NADH и FADH2, которые тоже поступают в дыхательную цепь в качестве доноров электронов. В результате суммарный энергетический выход катаболизма липидов достаточно высок. Так, к примеру, окисление пальмитиновой кислоты по β-механизму дает 106 молекул АТФ.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе,
  • по «сахарной» кривой после ,
  • по величине гипергликемии после введения гормонов (например, проба с адреналином).

Роль в липидном обмене рассматривается:

  • по концентрации в крови триацилглицеролов, холестерола, ЛПОНП, ЛПНП, ЛПВП,
  • по коэффициенту .

Белковый обмен оценивается:

  • по концентрации и его в сыворотке крови,
  • по показателям коагулограммы,
  • по уровню мочевины в крови и моче,
  • по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается:

по концентрации общего и прямого билирубина в сыворотке крови.

Разработка расширений Joomla

Окисление нечетных и ненасыщенных жирных кислот

Окисление
жирных кислот с нечетным числом углеродных
атомов

Жирные
кислоты с нечетным числом углеродов
поступают в организм с растительной
пищей и морепродуктами. Их окисление
происходит по обычному пути до последней
реакции, в которой образуется
пропионил-SКоА.
Суть превращений пропионил-SКоА сводится
к его карбоксилированию, изомеризации
и образованию сукцинил-SКоА. В этих
реакциях участвуют биотин
и витамин
В12.

Последние
реакции окисления жирных кислот с
нечетным числом атомов углерода

Окисление
ненасыщенных жирных кислот

При
окислении ненасыщенных жирных кислот
возникает потребность клетки в
дополнительных ферментах изомеразах.
Эти изомеразы перемещают двойные связи
в жирнокислотных остатках из γ-
в β-положение
и переводят природные двойные связи из
цис-
в транс-положение.

Таким
образом, уже имеющаяся двойная связь
готовится к β-окислению и пропускается
первая реакция цикла, в которой участвует
ФАД.

Первые
реакции окисления ненасыщенных жирных
кислот и роль изомераз

Расчет
энергетического баланса β-окисления

При
расчете количества АТФ, образуемого
при β-окислении жирных кислот необходимо
учитывать:

  • количество
    образуемого ацетил-SКоА
    – определяется обычным делением числа
    атомов углерода в жирной кислоте на 2.

  • число циклов
    β-окисления.
    Число циклов β-окисления легко определить
    исходя из представления о жирной кислоте
    как о цепочке двухуглеродных звеньев.
    Число разрывов между звеньями
    соответствует числу циклов β-окисления.
    Эту же величину можно подсчитать по
    формуле (n/2 -1), где n – число атомов
    углерода в кислоте.

  • число двойных
    связей
    в жирной кислоте. В первой реакции
    β-окисления происходит образование
    двойной связи при участии ФАД. Если
    двойная связь в жирной кислоте уже
    имеется, то необходимость в этой реакции
    отпадает и ФАДН2
    не образуется. Количество необразованных
    ФАДН2
    соответствует числу двойных связей.
    Остальные реакции цикла идут без
    изменений.

  • количество энергии
    АТФ,
    потраченной на активацию (всегда
    соответствует двум
    макроэргическим связям).

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на «экспорт», составляющие понятие «белки крови» – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины.

Реакции теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Таблица 2. ФИЗИЧЕСКИЕ СВОЙСТВА ОДНООСНОВНЫХ ЖИРНЫХ КИСЛОТ [по Карреру (Р. Karrer), 1959]

Название жирной кислоты

Формула

t кип

t пл

Разности

t пл

t пл

Разности

t пл

Капроновая

C6H12O2

205

-1,5

Энантовая

С7Н14O2

223

— 10,5

18,0

Каприловая

C8H16O2

237

23,0

16,5

Пеларгоновая

C9H18O2

254

12,5

14,9

Каприновая

C10H20O2

269

15,5

31,4

Ундециловая

C11H22O2

212*

28,0

12,2

Лауриновая

C12H24O2

225*

12,5

43,6

Тридециловая

C13H26O2

236*

40,5

10,4

Миристиновая

C11H28O2

248*

11,6

54,0

Пентадециловая

C15H30O2

257*

52,1

9,1

Пальмитиновая

C16H32O2

268*

9,9

63,1

Маргариновая

C17H34O2

277*

62,0

7,0

Стеариновая

C18H36O2

287*

7,4

70,1

Нонадециловая

C19H38O2

298*

69,4

5,1

Арахиновая

C20H40O2

75,2

* При давлении 100 мм рт. ст.

Библиография:

Зиновьев А. А. Химия жиров, М., 1952; Hьюсхолм Э. и Старт К. Регуляция метаболизма, пер. с англ., М., 1977; Перекалин В. В. и Зонне С. А. Органическая химия, М., 1973; Biochemistry and methodology of lipids, ed. by A. R. Jonson a. J. B. Davenport, N. Y., 1971; Fatty acids, ed. by K. S. Markley, pt 1—3, N. Y.—L., 1960—1964, bibliogr.; Lipid metabolism, ed. by S. J. Wakil, N. Y.—L., 1970.

Пируватдегидрогеназный мульферментный комплекс

Суммарное уравнение отражает окислительное декарбоксилирование пирувата, восстановление НАД до НАДН и образование ацетил-SKoA.

Суммарное уравнение окисления пировиноградной кислоты

Превращение состоит из пяти последовательных реакций, осуществляется мультиферментным комплексом, прикрепленным к внутренней митохондриальной мембране со стороны матрикса. В составе комплекса насчитывают 3 фермента и 5 коферментов:

  • Пируватдегидрогеназа (Е1, ПВК-дегидрогеназа), ее коферментом является тиаминдифосфат (ТДФ), катализирует 1-ю реакцию.
  • Дигидролипоат-ацетилтрансфераза (Е2), ее коферментом является липоевая кислота, катализирует 2-ю и 3-ю реакции.
  • Дигидролипоат-дегидрогеназа (Е3), кофермент – ФАД, катализирует 4-ю и 5-ю реакции.

Помимо указанных коферментов, которые прочно связаны с соответствующими ферментами, в работе комплекса принимают участие коэнзим А и НАД.

Суть первых трех реакций сводится к декарбоксилированию пирувата (катализируется пируватдегидрогеназой, Е1), окислению полученного гидроксиэтила до ацетила и переносу ацетила на коэнзим А (катализируется дигидролипоат-ацетилтрансферазой, Е2).

Реакции синтеза ацетил-SКоА

Оставшиеся 2 реакции необходимы для возвращения липоевой кислоты и ФАД в окисленное состояние (катализируются дигидролипоат-дегидрогеназой, Е3). При этом образуется НАДН.

Реакции образования НАДН

Регуляция пируватдегидрогеназного комплекса

Регулируемым ферментом ПВК-дегидрогеназного комплекса является первый фермент – пируватдегидрогеназа (Е1). Два вспомогательных фермента – киназа и фосфатаза обеспечивают регуляцию активности пируватдегидрогеназы путем ее фосфорилирования и дефосфорилирования.

Вспомогательный фермент киназа активируется при избытке конечного продукта биологического окисления АТФ и продуктов ПВК-дегидрогеназного комплекса – НАДН и ацетил-S-КоА. Активная киназа фосфорилирует пируватдегидрогеназу, инактивируя ее, в результате первая реакция процесса останавливается.

Фермент фосфатаза, активируясь ионами кальция или инсулином, отщепляет фосфат и активирует пируватдегидрогеназу.

Регуляция активности пируватдегидрогеназы

Таким образом, работа пируватдегидрогеназы подавляется при избытке в митохондрии (в клетке) ацетил-SКоА и НАДН, что позволяет снизить окисление пирувата и, следовательно, глюкозы в случае когда энергии достаточно.

Если АТФ мало или имеется влияние инсулина, то образуется ацетил-SКоА. Последний в зависимости от условий будет направляться либо в цикл трикарбоновых кислот с образованием энергии АТФ, либо на синтез холестерина и жирных кислот.

Что такое липидный (жировой) обмен

Учебники для студентов медицинских вузов называют липидный обмен совокупностью процессов превращения жиров в клетках организма и во внеклеточной среде. По сути – это все изменения жиросодержащих соединений при взаимодействии с другими, в результате чего реализуются функции липидов в организме человека:

  • обеспечение энергией (расщепление жиров происходит с отрывом атомов водорода, соединяющихся с атомами кислорода, что приводит к образованию воды с выделением большого количества тепла);
  • запас этой энергии (в виде отложения липидов в жировых депо – подкожной и висцеральной клетчатке, митохондриях клеток);
  • стабилизация и регенерация цитоплазматических мембран (жиры входят в состав всех клеточных оболочек);
  • участие в синтезе биологически активных веществ (стероидных гормонов, простагландинов, витаминов A и D), а также сигнальных молекул, передающих информацию от клетки к клетке;
  • теплоизоляция и амортизация внутренних органов;
  • предотвращение от спадения легочной ткани (некоторые липиды являются составной частью сурфактанта);
  • участие в клеточном ответе на окислительный стресс, обусловленный действием свободных радикалов, и предотвращение развития связанных с ним патологий;
  • защита эритроцитов от гемотропных ядов;
  • распознавание антигенов (выступающие отростки липидных комплексов цитоплазматических мембран выполняют роль рецепторов, главная из которых – агглютинация при несовместимости крови по системе АВ0);
  • участие в процессе переваривания поступающих с пищей жиров;
  • образование защитной пленки на поверхности кожи, предохраняющей ее от пересыхания;
  • синтез основного гормона, регулирующего собственный (жировой) обмен (этим веществом является лептин).

Коль зашла речь о гормональной регуляции, то стоит упомянуть и другие биологически активные соединения, влияющие на липидный баланс: инсулин, тиреотропин, соматотропин, кортизол, тестостерон. Они синтезируются поджелудочной и щитовидной железами, гипофизом, корой надпочечников, мужскими семенниками и женскими яичниками. Инсулин способствует образованию жира, остальные гормоны, наоборот, ускоряют его метаболизм.

Жиры, содержащиеся во всех живых клетках, делят на несколько групп:

  • жирные кислоты, альдегиды, спирты;
  • моно-, ди- и триглицериды;
  • глико-, фосфолипиды и фосфогликолипиды;
  • воски;
  • сфинголипиды;
  • эфиры стеринов (в том числе холестерина, по химическому составу являющегося спиртом, но играющего огромную роль в нарушениях липидного обмена).

Есть еще несколько узко специфических жиров, и все они являются участниками обменных процессов. В нейтральном состоянии липиды встречаются только внутри клеток, в кровеносном русле их циркуляция невозможна из-за большой вероятности развития жировой закупорки мелких сосудов. Поэтому природа предусмотрела их соединение с белками-транспортировщиками. Такие сложные соединения названы липопротеидами. Их анаболизм происходит в основном в печени и в эпителии тонкого кишечника.

Чтобы определить состояние липидного обмена проводят анализ крови на липидный профиль. Называется он липидограммой, и включает показатели разных фракций липопротеинов (высокой, низкой и очень низкой плотности), всего содержащегося в них холестерина и триглицеридов. Нормы показателей липидного обмена изменяются в зависимости от пола и возраста, и сведены в единую таблицу (для женщин и мужчин), пользующуюся популярностью у врачей.

Гликолиз

Анаэробное превращение глюкозы локализуется в цитозоле и включает два этапа из 11 ферментативных реакций.

Первый этап гликолиза

Первый этап гликолиза – подготовительный, здесь происходит затрата энергии АТФ, активация глюкозы и образование из нее триозофосфатов.

Первая реакция гликолиза сводится к превращению глюкозы в реакционно-способное соединение за счет фосфорилирования 6-го, не включенного в кольцо, атома углерода. Эта реакция является первой в любом превращении глюкозы, катализируется гексокиназой.

Вторая реакция необходима для выведения еще одного атома углерода из кольца для его последующего фосфорилирования (фермент глюкозофосфат-изомераза). В результате образуется фруктозо-6-фосфат.

Третья реакция – фермент фосфофруктокиназа фосфорилирует фруктозо-6-фосфат с образованием почти симметричной молекулы фруктозо-1,6-дифосфата. Эта реакция является главной в регуляции скорости гликолиза.

В четвертой реакции фруктозо-1,6-дифосфат разрезается пополам фруктозо-1,6-дифосфат-альдолазой с образованием двух фосфорилированных триоз-изомеров – альдозы глицеральдегида (ГАФ) и кетозы диоксиацетона (ДАФ).

Пятая реакция подготовительного этапа – переход глицеральдегидфосфата и диоксиацетонфосфата друг в друга при участии триозофосфатизомеразы. Равновесие реакции сдвинуто в пользу диоксиацетонфосфата, его доля составляет 97%, доля глицеральдегидфосфата – 3%. Эта реакция, при всей ее простоте, определяет дальнейшую судьбу глюкозы:

  • при нехватке энергии в клетке и активации окисления глюкозы диоксиацетонфосфат превращается в глицеральдегидфосфат, который далее окисляется на втором этапе гликолиза,
  • при достаточном количестве АТФ, наоборот, глицеральдегидфосфат изомеризуется в диоксиацетонфосфат, и последний отправляется на синтез жиров.

 Второй этап гликолиза

Второй этап гликолиза – это освобождение энергии, содержащейся в глицеральдегидфосфате, и запасание ее в форме АТФ.

Шестая реакция гликолиза (фермент глицеральдегидфосфат-дегидрогеназа) – окисление глицеральдегидфосфата и присоединение к нему фосфорной кислоты приводит к образованию макроэргического соединения 1,3-дифосфоглицериновой кислоты и НАДН.

В седьмой реакции (фермент фосфоглицераткиназа) энергия фосфоэфирной связи, заключенная в 1,3-дифосфоглицерате тратится на образование АТФ. Реакция получила дополнительное название – реакция субстратного фосфорилирования, что уточняет источник энергии для получения макроэргической связи в АТФ (от субстрата реакции) в отличие от окислительного фосфорилирования (использование энергии электрохимического градиента ионов водорода на мембране митохондрий).

Восьмая реакция – синтезированный в предыдущей реакции 3-фосфоглицерат под влиянием фосфоглицератмутазы изомеризуется в 2-фосфоглицерат.

Девятая реакция – фермент енолаза отрывает молекулу воды от 2-фосфоглицериновой кислоты и приводит к образованию макроэргической фосфоэфирной связи в составе фосфоенолпирувата.

Десятая реакция гликолиза – еще одна реакция субстратного фосфорилирования – заключается в переносе пируваткиназой макроэргического фосфата с фосфоенолпирувата на АДФ и образовании пировиноградной кислоты.

Последняя реакция бескислородного окисления глюкозы, одиннадцатая – образование молочной кислоты из пирувата под действием лактатдегидрогеназы

Важно то, что эта реакция осуществляется только в анаэробных условиях. Эта реакция необходима клетке, так как НАДН, образующийся в 6-й реакции, в отсутствие кислорода не может окисляться в митохондриях

У плода и детей первых месяцев жизни преобладает анаэробный распад глюкозы, в связи с чем концентрация молочной кислоты в крови у них выше чем у взрослых. 
При наличии кислорода пировиноградная кислота переходит в митохондрию и превращается в ацетил-S-КоА. 

Структура

Подразделения

SCS бактерий и млекопитающих состоят из субъединиц α и β . В E. coli два гетеродимера αβ соединяются вместе, образуя гетеротетрамерную структуру α 2 β 2 . Однако митохондриальные SCS млекопитающих активны как димеры αβ и не образуют гетеротетрамер. Кишечная палочка гетеротетрамеры ГКС была кристаллизуют и охарактеризованы в деталях. Как видно на изображении 2, две субъединицы α (розовая и зеленая) находятся на противоположных сторонах структуры, а две субъединицы β (желтая и синяя) взаимодействуют в средней области белка. Две α-субъединицы взаимодействуют только с одной β-единицей, тогда как β-единицы взаимодействуют с одной α-единицей (с образованием димера αβ) и β-субъединицей другого αβ-димера. Короткая аминокислотная цепь связывает две β-субъединицы, что дает тетрамерную структуру.

Изображение 2: E.coli , сукцинил-СоА — синтетазы гетеротетрамер; субъединицы α: розовый и зеленый , субъединицы β: желтый и синий . Розовый и желтый образуют один димер, а зеленый и синий — другой димер. Идентификатор PDB: 1CQG

Каталитические остатки

Кристаллические структуры SCS E. coli свидетельствуют о том, что кофермент А связывается внутри каждой α-субъединицы (в пределах складки Россмана ) в непосредственной близости с остатком гистидина (His246α). Этот остаток гистидина фосфорилируется на стадии образования сукцината в механизме реакции. Точное место связывания сукцината точно не определено. Образование нуклеозидтрифосфата происходит в захватном домене АТФ, который расположен около N-конца каждой β-субъединицы. Однако этот домен захвата расположен примерно в 35 Å от остатка фосфорилированного гистидина. Это заставляет исследователей полагать, что фермент должен претерпеть серьезные изменения в конформации, чтобы доставить гистидин к домену захвата и облегчить образование нуклеозидтрифосфата. Эксперименты по мутагенезу определили, что два остатка глутамата (один рядом с каталитическим гистидином, Glu208α и один рядом с захваченным доменом АТФ, Glu197β) играют роль в фосфорилировании и дефосфорилировании гистидина, но точный механизм, с помощью которого фермент изменяет конформацию, не определен. полностью понял.

Изоформы

Джонсон и др. описывают две изоформы сукцинил-КоА синтетазы у млекопитающих , одну, которая определяет синтез АДФ , и одну, которая синтезирует GDP .

У млекопитающих фермент представляет собой гетеродимер α- и β-субъединицы. Специфичность как для аденозиновых, так и для гуанозинфосфатов определяется β-субъединицей, которая кодируется 2 генами. SUCLG2 является GTP-специфичным, а SUCLA2 является ATP-специфичным, в то время как SUCLG1 кодирует общую α-субъединицу. β-варианты продуцируются в разных количествах в разных тканях, вызывая потребность в субстрате GTP или ATP .

В большинстве потребляющих тканей, таких как сердце и мозг, больше АТФ-специфической сукцинил-КоА синтетазы (ATPSCS), в то время как синтетические ткани, такие как почки и печень, имеют более GTP-специфическую форму (GTPSCS). Кинетический анализ ATPSCS из грудной мышцы голубей и GTPSCS из печени голубя показал, что их кажущиеся константы Михаэлиса были подобны для CoA, но различались для нуклеотидов, фосфата и сукцината. Наибольшая разница была для сукцината: K m app для ATPSCS = 5 мМ по сравнению с GTPSCS = 0,5 мМ.

Расчет энергетического баланса β-окисления

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА — определяется обычным делением числа атомов углерода в жирной кислоте на 2;
  • число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 −1), где n — число атомов углерода в кислоте;
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН2 не образуется. Количество необразованных ФАДН2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений;
  • количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА. Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН, 1 молекула ФАДН2 и 1 молекула ГТФ, что эквивалентно 12 молекулам АТФ (см также Способы получения энергии в клетке). Итак, 8 молекул ацетил-S-КоА обеспечат образование 8×12=96 молекул АТФ.
  • для пальмитиновой кислоты число циклов β-окисления равно 7. В каждом цикле образуется 1 молекула ФАДН2 и 1 молекула НАДН. Поступая в дыхательную цепь, в сумме они «дадут» 5 молекул АТФ. Таким образом, в 7 циклах образуется 7×5=35 молекул АТФ.
  • двойных связей в пальмитиновой кислоте нет.
  • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ.

Таким образом, суммируя, получаем 96+35-2 =129 молекул АТФ образуется при окислении пальмитиновой кислоты.

Регуляция

Скорость регуляции процесса β-окисления включает несколько факторов:

  • Соотношений АТФ/АМФ и НАДH/НАД+, так же, как и скорость реакций ЭТЦ и общего пути катаболизма;
  • состояния голодания или сытости (то есть соотношения инсулин — глюкагон);
  • активности регуляторного фермента карнитин-пальмитоилтрансферазы I (CPTI);
  • доступности субстрата — жирных кислот;
  • потребности клетки в энергии;
  • доступности кислорода.

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-КоА, веществом, образующимся при биосинтезе жирных кислот.

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-КоА. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-КоА-карбоксилазы, синтезирующий малонил-КоА для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А, которая активируется в клетках под действием адреналина, и АМФ-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-КоА снижается. Вследствие этого, при физической работе, когда в клетке появляется АМФ, под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается.

n1.doc

  2  

ЖЕЛЧНЫЕ КИСЛОТЫЖелчные кислоты2339первичные желчные кислотывторичные желчные кислотыэмульгировании жиров6активаторамивсасывании жировПромежуточный метаболизм липидов в клеткахМетаболизм глицеринаОкислениежирных кислот — окисленияb — окисление

  1. активация жирных кислот

Активация жирных кислотТранспорт жирных кислот внутрь митохондрий.10карнитинОсновные положения — окисления жирных кислот:

  1. Окисление молекулы жирной кислоты в тканях организма происходит по  — углеродному атому в цепи:

2

  1. В ходе реакций одного цикла окисления молекула жирной кислоты укорачивается на два углеродных атома, которые отщепляются в виде ацетил – КоА. Укороченная таким образом жирная кислота может вступать в следующий цикл  — окисления, где потеряет еще два углеродных атома, и так будет продолжаться то тех пор, пока вся молекула жирной кислоты не распадется на двууглеродные фрагменты.

Энергетика — окисления222222БИОСИНТЕЗ ЛИПИДОВ.Биосинтез жирных кислот.Биосинтез триацилглицеридовв стенках кишечника — моноглицеридному1тканях — глицерофосфата

  1. Образование активной формы жирной кислоты – ацил–КоА при участии ацил-КоА-синтетазы;
  2. Образование  — глицерофосфата (глицерол – 3-фосфата) при участии глицеролкиназы;
  3. Превращение  — глицерофосфата в фосфатидную кислоту при участии глицерофосфат–ацилтрансферазы в результате ацилирования двумя молекулами ацил-КоА;
  4. Превращение фосфатидной кислоты путем гидролиза в диглицерид при участии фосфатидат-фосфогидролазы;
  5. Ацилирование диглицерида с образованием триглицерида при участии диглицеридацилтрансферазы.

ОБМЕН БЕЛКОВПереваривание и всасывание белков.экзопепетидазыэндопептидазыПепсингастриксинаТрипсинХимотрипсинндопептидазэкзопептидазкарбоксипептидазыаминопептидазыВсасывание продуктов распада белков.Транспорт аминокислот через клеточные мембраны+Пути использования аминокислот в организмеПромежуточный обмен аминокислот в тканях.3Дезаминирование22

  1. Восстановительное дезаминирование:
  1. Гидролитическое дезаминирование:
  1. Внутримолекулярное дезаминирование:
  1. Окислительное дезаминирование

ТрансаминированиеТрансаминирование

  • глутаматаминотрансфераза (переносит аминогруппу с любой аминокислоты на -кетоглутаровую кислоту, которая при этом превращается в глутаминовую);
  • аспартатаминотрансфераза (переносит аминогруппу с любой аминокислоты на ЩУК с образованием аспарагиновой кислоты);
  • аланинаминотрансфераза (переносит аминогруппу с любой аминокислоты на ПВК с образованием аланина).

6223Клиническое значение определения активности трансаминаз. Непрямое дезаминированиеДекарбоксилирование аминокислотДекарбоксилирование2биогенные амины (2биогенные аминыГистамин-аминомасляная кислотаСеротонин ДофаминНорадреналинАдреналин ? ?Конечные продукты распада аминокислот.Обезвреживание аммиака в организме.322Пути обезвреживания аммиака в организме.

  1. Восстановительное аминирование.

глутамина

  1. Образование аммонийных солей.

3+4+аммонийную соль++

  1. Основным механизмом связывания аммиака в организме является синтез мочевины. Мочевина выводится из организма с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного обмена. На долю мочевины приходится до 80-85 % от всего выводимого из организма азота. Количество выделяемой мочевины зависит от количества белков, поступающих с пищей. Если суточный рацион включает 80–100 г белка, то за сутки образуется и выводится 25–30 г мочевины.

орнитинового цикла мочевинообразования Кребса (цикл мочевины Кребса — Хензеляйта)32орнитинацитруллина3аргининосукцинатааргининфумарат3, 2
  2  

ЖЕЛЧНЫЕ КИСЛОТЫ

Примечания

  1. Строев Е. А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. — М.: Высшая школа, 1986. — 479 с.
  2. Е.С. Северин. Биохимия. — М: ГЭОТАР-МЕД, 2004. — 779 с. — ISBN 5-9231-0254-4.
  3. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
  4. ↑ , p. 943.
  5. Knoop, Franz. Der Abbau aromatischer Fettsäuren im Tierkörper (неопр.) // Beitr Chem Physiol Pathol. — 1904. — Т. 6. — С. 150—162.
  6. Voet, Donald; Voet, Judith; Pratt, Charlotte. Fundamentals of Biochemistry Life at the Molecular Level (англ.). — New York City: John Wiley & Sons, Inc., 2013. — P. 582—584. — ISBN 1118129180.
  7. Р.Марри, Д.Греннер, П. Мейес, В. Родуэлл. Биохимия человека. — М.: Мир, 1993. — Т. I. — 384 с. — ISBN 5-03-001774-7.
  8. Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: БИНОМ, 2011. — Т. II.
  9. Кольман. Я., Рём К. Г. Наглядная биохимия. — М.: Мир, 2011. — 469 с. — ISBN 5-03-003304-1.
  10. Биологическая химия с упражнениями и задачами / Под ред. С.Е. Северина. — М.: ГЭОТАР-Медиа, 2011. — 624 p. — ISBN 9785970417553.
  11. P. Bowen, C. S. N. Lee, H. U. Zellweger, R. Lindenburg. A familial syndrome of multiple congenital defects. Bulletin of the Johns Hopkins Hospital, 1964; 114: 402.
  12. OMIM
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий