Двигательные единицы

Механизм синаптической передачи

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Понравился сайт? Поддержи нас подпиской в соцсетях!

Группа сайта в VK
Профиль сайта в Twitter
Сообщество сайта в Facebook

Типы моторных единиц[править | править код]

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные/slow (S-МЕ) и быстрые/fast (F-МЕ). А F-МЕ в свою очередь делят по устойчивости к утомлению на быстроутомляемые/fast-fatigable (FF-МЕ) и устойчивые к утомлению/fast-fatigue-resistant (FR-МЕ).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны(S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны(FR-МН). S- МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий. МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путём окислительного фосфорилирования.

Как правило, число волокон в FF-ME меньше, чем в S-ME. Волокна FR-ME характеризуются меньшим содержанием митохондрий, чем в FF-ME, а также тем, что АТФ в них образуется за счет гликолиза. В них отсутствует миоглобин, поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Рефлекс «отряхивания лапы»

Затем был открыт рефлекс, являющийся примером ситуации, когда необходимо включить только быстрые моторные единицы, без использования медленных. Это натуральный спинальный рефлекс «встряхивания лапы». Этот рефлекс сохраняется у спинальных кошек, и естественно присутствует у особей с интактной нервной системой. «Встряхивание» наблюдается у интактной кошки, когда та наступит лапой в воду. Следовательно, за запуск данного рефлекса отвечают низкопороговые кожные афференты подушечек лапы. В этом рефлексе не задействован soleus («медленная» мышца голени см. Нога, время сокращения 20-25 мс), а работает только gastrocnemius («быстрая» мышца голени, время сокращения 80 мс). Частота отряхивания лапы очень велика, настолько (10-12Гц), что исключает возможность задействования медленных моторных единиц.

В 1980 году Д.Смит (Д.Смит и др. Дж. физиол. 1980) в своей работе «Быстрые экстензоры голеностопа во время встряхивания лапы: их избирательное вовлечение» описал изучение солиуса и гастрокнемиуса кошки в трёх состояниях (стояние, ходьба, прыжки). Оказалось, что обе эти мышцы работают вместе во всех трёх случаях. То же было показано для быстрых и медленных мышц-разгибателей передних конечностей. Оказалось, что несмотря на то, что солиус является медленной мышцей, это нисколько не мешает при быстрых движениях (галоп, прыжки). И опять же Смит и др. попытались найти такое движение, которое было бы слишком быстрым для солиуса. Солиус способен развить усилие за 80 мс (время разгибания сустава при прыжке на 1 м = 130—150 мс). Смит также обнаружил что частота встряхивания лапы близка по частоте к тремору (10-13 раз в сек), следовательно, при таком быстром движении солиус молчит. Однако, если частота чесания приближается к 120—150 мс солиус работает (!), как и при прыжке.

В 1999 г. учёными из Атланты (Коп и Соколов) было доказано, что для медиальной и латеральной головок гастрокнемиуса «принцип величины Хеннемана» вполне применим и значительно облегчает координацию работы различных мышц. При этом они исследовали применения этого принципа к пулам мотонейронов мышц, коактивирующихся (такое движение, при котором мышца-антагонист или группа мышц всё же частично активны, когда начальная мышечная активность исчерпалась. Например, трицепс частично активен, когда бицепс совершает какие-либо маневры, а квадрицепс частично активизирован, когда активен гамстринг) в этом конкретном движении.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. Главная причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Мионевральный аппарат позвоночных

Место контакта нервного волокна с мышечным называется мионевральным аппаратом или нервно-мышечным синапсом. У позвоночных животных к каждому мионевральному аппарату подходит одна толстая мякотная веточка двигательного нервного волокна, а к капиллярам, прилегающим к мышечным волокнам, подходит одно тонкое мякотное волокно симпатической нервной системы.

Двигательное нервное волокно лишается миелиновой оболочки в месте ответвления концевой веточки, образующей контакты с моторной концевой пластинкой. В концевых веточках больше митохондрий, чем в аксоне. Мембраны нервного окончания и двигательной концевой пластинки разделены синаптической щелью шириной 50 нм. По краям контакта мембран синаптическая щель открывается во внеклеточное пространство. В пресинаптическом нервном окончании, непосредственно у пресинаптической щели, много пузырьков ацетилхолина диаметром около 50 нм. Мышечное волокно имеет только один синапс.

Площадь мионеврального аппарата млекопитающих 2-3 мкм2, общее количество пузырьков ацетилхолина около 20 тыс., они занимают примерно 20% объема аппарата.

На постсинаптической мембране около 4 млн. холинорецепторов, связывающих ацетилхолин, что увеличивает ее проницаемость для ионов Na и К, и холинэстеразных, в которых ацетилхолин разрушается ферментом холинэстеразой. Ацетилхолин как медиатор или посредник в передаче возбуждения обеспечивает прохождение импульсов возбуждения через мионевральный аппарат с нерва на мышцу. Разрушение ацетилхолина прекращает нервно-мышечную передачу. Эта передача облегчается суммацией мельчайших порций — квантов ацетилхолина, поступающих из каждого пузырька, а также увеличением общего количества ацетилхолина. Таким образом, возбуждение в мионевральном аппарате возрастает градуально. В покое в отсутствие нервного импульса выделяется небольшое количество ацетилхолина, но беспорядочно, асинхронно, что приводит к возникновению слабых, миниатюрных электрических потенциалов. При поступлении одиночного нервного импульса кванты ацетилхолина выделяются синхронно и в большом количестве, что приводит к образованию в мионевральном аппарате потенциала, в 50-80 раз превышающего амплитуду слабого потенциала в покое. Этот потенциал возбуждает мышечные волокна. После прекращения раздражения двигательного нерва, вызывавшего тетаническое сокращение мышцы, возбуждение мионевральных аппаратов прекращается не сразу, а продолжается некоторое время. После длительного тетанического сокращения наблюдается временное угнетение передачи импульсов как результат выделения большого количества ацетилхолина. Наоборот, когда тетаническое сокращение продолжается недолго и секреция ацетилхолина мала, после прекращения раздражения нерва возбуждение мионеврального аппарата усиливается. При оптимальном ритме раздражения повышается экономичность расходования ацетилхолина на проведение каждого нервного импульса.

Механизм регуляции[править | править код]

В основном в регуляции мышечной активности участвуют нейроны, но есть случаи, когда сокращением гладкой мускулатуры управляют и гормоны (например, адреналин и окситоцин). Сигнал о сокращении можно разделить на несколько этапов:

От клеточной мембраны до саркоплазматического ретикулумаправить | править код

Воздействие медиатора, выделившегося из мотонейрона, вызывает потенциал действия на клеточной мембране мышечной клетки, который передаётся далее с помощью специальных впячиваний мембраны, называемых Т-трубочками, которые отходят от мембраны внутрь клетки. От Т-трубочек сигнал передаётся саркоплазматическому ретикулуму — особому компартменту из уплощенных мембранных пузырьков (эндоплазматической сети мышечной клетки), окружающих каждую миофибриллу. Этот сигнал вызывает открытие Ca2+-каналов в мембране ретикулума. Обратно ионы Ca2+ попадают в ретикулум с помощью мембранных кальциевых насосов — Ca2+-АТФазы.

От выделения ионов Ca2+ до сокращения миофибриллправить | править код

Механизм сокращения мышц с учётом тропонина и тропомиозина

Для того, чтобы контролировать сокращение, к актиновому филаменту прикрепляется белок тропомиозин и комплекс из трёх белков — тропонин (субъединицы этого комплекса называются тропонинами T,I и C). Тропонин C — близкий гомолог другого белка, кальмодулина. Через каждые семь субъединиц актина расположен только один тропониновый комплекс. Связь актина с тропонином I перемещает тропомиозин в положение, мешающее связи миозина с актином. Тропонин C связывается с четырьмя ионами Ca2+ и ослабляет действие тропонина I на актин, и тропомиозин занимает положение, не препятствующее связи актина с миозином. Источником энергии для сокращения мышечных волокон служит АТФ. При связывании тропонина с ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. За счет ферментативной активности головок миозина гидролизуется АТФ, расположенный на головке миозина, что обеспечивает энергией изменение конформации головок и скольжение нитей. Освобождающиеся при гидролизе АТФ молекула АДФ и неорганический фосфат используются для последующего ресинтеза АТФ. К миозиновой головке присоединяется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продолжается до тех пор, пока концентрация кальция внутри миофибрилл не снизится до подпороговой величины. Тогда мышечные волокна начинают расслабляться.

Физиология гладких мышц.

Гладкие мышцы имеются в стенках
большинства органов пищеварения,
сосудов, выводных протоков различных
желез, мочевыводящей системы. Они
являются непроизвольными и обеспечивают
перистальтику органов пищеварения и
мочевыводящей системы, поддержание
тонуса сосудов. В отличие от скелетных,
гладкие мышцы образованны клетками
чаще веретенообразной формы и небольших
размеров, не имеющих поперечной
исчерченности. Последнее связано с тем,
что сократительный аппарат не обладает
упорядоченным строением. Миофибриллы
состоят из тонких нитей актина, которые
идут в различных направлениях и
прикрепляются к разным участкам
сарколеммы. Миозиновые протофибриллы
расположены рядом с актиновыми. Элементы
саркоплазматического ретикулума не
образуют систему трубочек. Отдельные
мышечные клетки соединяются между собой
контактами с низким электрическим
сопротивлением – нексусами, что
обеспечивает распространение возбуждения
по всей гладкомышечной структуре.
Возбудимость и проводимость гладких
мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60
мВ, так как мембрана гладкомышечных
клеток имеет относительно высокую
проницаемость для ионов натрия. Причем
у многих гладких мышц мембранный
потенциал не постоянен. Он периодически
уменьшается и вновь возвращается к
исходному уровню. Такие колебания
называются медленными волнами. Когда
вершина медленной волны достигает
критического уровня деполяризации, на
ней начинают генерировать потенциалы
действия, сопровождающиеся сокращением.
Медленная волна и потенциал действия
проводятся по гладким мышцам со скоростью,
всего 5-50 см/сек. Такие гладкие мышцы
называются спонтанно активными,
т.к. они обладают автоматией. Например,
за сет такой активности происходит
перистальтика кишечника. Водители ритма
кишечной перистальтики расположены в
начальных отделах соответствующих
кишок.

Генерация потенциала действия на
гладкомышечных клетках обусловлена
входом в них ионов кальция. Механизмы
электромеханического сопряжения также
отличаются. Сокращение развивается за
счет кальция, входящего в клетку во
время потенциала действия. Опосредует
связь кальция с укорочением миофибрилл
важнейший клеточный белок – кальмобулин.

Кривая сокращения также отличается.
Латентный период, период укорочения, а
особенно расслабления значительно
продолжительнее, чем у скелетных мышц.
Сокращение длиться несколько секунд.
Гладким мышцам, в отличие от скелетных
свойственно явление пластического
тонуса
– это способность длительное
время находится в состоянии сокращения
без значительных энергозатрат и
утомления. Благодаря этому свойству
поддерживается форма внутренних органов
и тонус сосудов. Кроме того, гладкомышечные
клетки сами являются рецепторами
растяжения. При их натяжении начинают
генерироваться потенциалы действия,
что приводит к сокращению гладкомышечных
клеток. Это явление называетсямиогенным
механизмом регуляции сократительной
активности
.

Рефлекс на растяжение

При растяжение мышцы первыми возбуждаются S-MH, но частота их разряда невелика (5—10 имп./с). По мере растяжения мышцы частота подачи импульсов S-MH растет и достигает 40—50 имп./с. При таком растяжении в работу включаются FR-MH. При подключении одной FR-MЕ сила возрастает примерно в 10 раз. Если растяжение продолжается, начинают импульсировать FF-MH , а значит подключаются FF-ME, каждая из которых дает прирост силы еще в 4—5 раз.
Зависимость силы, которую развивает мышца от степени её растяжения или от длины называют мышечной характеристикой, которую можно отобразить на графике в виде кривой.

«Принцип величины» Хеннемана

Увеличение нагрузки вызывает возбуждение различных типов МН в соответствии с их размерами. Порядок вовлечение новых МН, таким образом, как правило, одинаков практически при любом виде сокращения: сначала в процесс вовлекаются МН меньшего размера, затем большего. Такую закономерность в 1956 году Эдвуд Хеннеман описал как «принцип величины».

Еще до Хенемана ряд ученых описали некоторые положения этой закономерности. В частности, Денни-Броун и Эдриан Бронк, году исследовали принципы работы мышечной единицы. В 1929 они предположили, что есть два способа, с помощью которых нервная система может управлять сокращением мышц:

  • увеличение частоты подаваемых импульсов
  • увеличение количества вовлеченных в процесс сокращения МН.

В 1938 году Денни-Броун и Пеннибекер привели основные положения принципа величины в отношении МЕ, в отличие от Хеннемана, который сначала говорил только о МН, связывая порядок их вовлечения в работу с их размерами.

Нарушения «принципа величины»[править | править код]

Изначально предполагалось, что принцип величины работает при увеличивающемся изометрическом сокращении. Изометрическое сокращение — это сокращение мышцы без изменения её длины. Мышца сокращается изометрически при совершении статической работы. (Например, вы упираетесь плечом в стену, но сдвинуть её не можете.) Но мышечное сокращение не всегда является изометрическим (есть ещё изотоническое и ауксоническое). Даже в тех мышцах, на примере которых можно изучать изометрическое сокращение, одна и та же моторная единица может иметь разные пороги для активации (вовлечения) следующего своего звена для сгибания и разгибания. Такие замечания, которые часто обозначаются как «задания специфического ответа мотонейронов» (Ericksson et al., 1984), описали действие жевательного мускула человека (English, 1985) и подтвердили, что не все моторные единицы задействованы во время мышечного сокращения.

Идея о том, что существуют отдельные группы мотонейронов, отвечающие по-разному на какое-либо направленное движение, является исключением из «принципа величины» как для мышц челюсти, так и для мышц конечностей. До некоторого времени предполагалось что в зависимости от типа движения включается одна или другая моторная единица, однако позже было доказано, что это на самом деле две мышцы с двумя мотонейронными пулами, то есть эта мышца находится в процессе разделения на две различные. Весьма убедительный пример был приведён новозеландским неврологом Дереком Денни-Броуном, который в 1949 году показал, что при «хватательном» движении кисти в мышце flexor profundus digitorum моторные единицы включаются в одном порядке, а при «сгибательном» движении — в другом порядке.

Так же был проведён ряд экспериментов на интактных и децеребрированных кошках. Сначала в 1970 году группа ученых (Берк, Янковская, Тен Бруггенкате) в ходе своих исследований обнаружили что FF и FR мотонейроны могут быть полисинаптически возбуждены входами от низкопороговых кожных афферентов, а S-мотонейроны наоборот могут быть теми же входами заторможены. При этом возбуждающий постсинаптический потенциал (ВПСП) на F-мотонейронах является дисинаптическим, а на S-мотонейронах трисинаптическим (Иллерт и др. 1976). В 1982 году было показано что этот эффект вызывается моторной корой и красным ядром (см. Головной мозг) (Burke, 1982)

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Способы объяснения «принципа величины»

С физической точки зрения, принцип Хеннемана можно объяснить тем, что у разных МН разное входное сопротивление. У небольших МН меньше площадь мембраны, а значит выше входное сопротивление.

Интересен способ измерения входного сопротивления. Его измеряют так: вводят микроэлектрод в клетку, пропускают через него ток и смотрят, как сильно изменился мембранный потенциал. Одинаковые синапсы в разных МН создают одинаковые синаптические токи, поскольку сопротивление самого синапса гораздо больше, чем входное сопротивление МН. У маленьких МН эти токи будут вызывать больший сдвиг мембранного потенциала и более сильную мембранную деполяризацию. Таким образом, сначала в работу включаются более мелкие МН.

Другая гипотеза, которая активно обсуждалась исследователями, объясняла «принцип величины», в связи с с афферентами аI. Предполагалось, что афференты аI дают больше синаптических окончаний на маленьких МН и эти окончания лежат ближе к соме, а значит и эффективность синапсов выше. В процессе исследования этой идеи было получено множество количественных данных о связи мышечных афферентов и МН . Выяснилось, что одиночный афферент аI дает в пуле МН данной мышцы около 10 веточек, а каждая коллатераль образует до 200 синапсов, то есть всего афферент аI дает до 2000 синапсов. Например, в МН пуле трицепса 500—700 МН. На один МН в среднем приходится 2-4 синапса от одного афферентного волокна а I. С одним МН контактирует только одна коллатераль. Менделл и Хеннеман показали, что один афферент дает свои окончания достаточно диффузно по всему пулу, оканчиваясь на 90 % всех его МН и на 50 % мышцы синергиста. Таким образом можно предполагать, что вход от мышечных афферентов распределен по МН достаточно равномерно, так что именно собственные свойства МН определяют порядок их вовлечения.

Развитие

Моторные нейроны начинают развиваться на ранних этапах эмбрионального развития , и двигательные функции продолжают развиваться в детстве. В клетки расположены либо на рострально-каудальной оси, либо на вентрально-дорсальной оси. В аксоны двигательных нейронов начинают появляться на четвертой неделе развития из вентральной области вентральной-спинные оси ( донца ). Этот гомеодомен известен как домен предшественника моторных нейронов (pMN). Факторы транскрипции здесь включают Pax6 , OLIG2 , Nkx-6.1 и Nkx-6.2 , которые регулируются sonic hedgehog (Shh). Ген OLIG2 является наиболее важным из-за его роли в стимулировании , гена, который вызывает выход из клеточного цикла, а также способствует дальнейшим факторам транскрипции, связанным с развитием моторных нейронов.

Дальнейшая спецификация мотонейронов происходит, когда ретиноевая кислота , фактор роста фибробластов , Wnts и TGFb интегрируются в различные факторы транскрипции Hox . Существует 13 факторов транскрипции Hox, которые вместе с сигналами определяют, будет ли мотонейрон более ростральным или каудальным по характеру. В позвоночнике Hox 4-11 сортируют мотонейроны в один из пяти моторных столбцов.

Моторные столбы спинного мозга
Моторная колонка Расположение в спинном мозге Цель
Средняя колонка двигателя Присутствует вся длина Осевые мышцы
Гипаксиальная моторная колонка Грудной отдел Мышцы стенки тела
Преганглионарная моторная колонка Грудной отдел Симпатический ганглий
Боковая моторная колонка Плечевая и поясничная области (обе области дополнительно делятся на медиальную и латеральную области) Мышцы конечностей
Диафрагмальная моторная колонка Шейный отдел Диафрагма

Мотонейронный пул[править | править код]

Мотонейроны, иннервирующие одну мышцу, составляют общий мотонейронный пул. В одном мотонейронном пуле могут находиться мотонейроны разных размеров. Крупные мотонейроны, имеющие толстые аксоны и множество коллатералей, взаимодействующие с большим числом мышечных волокон содержатся в крупных МЕ. Такие МЕ характеризуются высокой скоростью проведения возбуждения, при этом имеют низкую возбудимость и генерируют высокую частоту нервных импульсов (20—50 имп./с).

Более мелкие МЕ включают в себя МН небольших размеров, имеющие медленнопроводящие тонкие аксоны и взаимодействующие с небольшим числом мышечных волокон. Крупные МН возбуждается только при больших нагрузках на мышцу, а мелкие МН могут включаться в работу при небольших мышечных усилиях.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

«Принцип величины» Хеннемана[править | править код]

Увеличение нагрузки вызывает возбуждение различных типов МН в соответствии с их размерами. Порядок вовлечение новых МН, таким образом, как правило, одинаков практически при любом виде сокращения: сначала в процесс вовлекаются МН меньшего размера, затем большего. Такую закономерность в 1956 году Эдвуд Хеннеман описал как «принцип величины».

Еще до Хенемана ряд ученых описали некоторые положения этой закономерности. В частности, Денни-Броун и Эдриан Бронк, году исследовали принципы работы мышечной единицы. В 1929 они предположили, что есть два способа, с помощью которых нервная система может управлять сокращением мышц:

  • увеличение частоты подаваемых импульсов
  • увеличение количества вовлеченных в процесс сокращения МН.

В 1938 году Денни-Броун и Пеннибекер привели основные положения принципа величины в отношении МЕ, в отличие от Хеннемана, который сначала говорил только о МН, связывая порядок их вовлечения в работу с их размерами.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий