Кумуляция (медицина)

Пример кумулятивного эффекта из повседневной жизни

Данное понятие используется в различных отраслях человеческой деятельности. С ним можно столкнуться не только в научной сфере. Сами того не подозревая, мы становимся участниками кумулятивного процесса, когда заняты повседневными делами.

Например, некому школьнику необходимо выучить параграф по предмету, состоящий их трех глав. Самым правильным и действенным методом будет усвоение материала по частям в течение нескольких дней. В первый раз школьник выучивает одну главу. Во второй день он повторяет изученное ранее и читает новую. Точно так же нужно поступить и с третьей главой. В итоге перед тем, как дать ответ по параграфу, задача школьника будет состоять лишь в том, чтобы повторить уже усвоенный материал. Это и есть кумулятивный эффект в повседневной жизни.

Когда мы уже имеем общее представление о данном процессе, рассмотрим его значение и применение в различных научных сферах.

Теория накопления стресса

Рассмотрим кумулятивный эффект в психологии. Его также можно охарактеризовать как метод накопления стресса, и заключается он
в следующем. При встрече с веселым и жизнерадостным человеком мы не задумываемся о том, какие проблемы он переживает в данный момент. Но о каких проблемах идет речь? Как может случиться, что такой счастливый человек, успевающий сделать столько дел, не может решить свои проблемы? И тут вдруг выясняется, что тот самый весельчак попадает в больницу с тяжелым заболеванием нервной системы.

Чтобы выполнить важную работу люди игнорируют полноценный сон и обеденные перерывы. Как следствие, страдают от недосыпа и нарушения пищеварения. Пропуская важную встречу и скандаля с родными, организм также испытывает стресс. Забыли вовремя оплатить счета – возникают переживания.

Любая повседневная мелочь, казалось бы, совсем неприметная, создает неприятную ситуацию. И вот когда «сосуд» из таких мелочей оказывается полным, тут и происходит злосчастный «всплеск». Последствиями такового становятся прогрессирующие болезни различных органов и систем организма.

Виды кумуляции

Различают кумуляцию материальную и функциональную.

  • Материальная кумуляция – накопление вещества при его систематическом поступлении. Способностью к этому виду накопления характеризуются стойкие пестициды – многие препараты из группы хлорорганических соединений, а также препараты ртути.
  • Функциональная кумуляция – это не накопление яда, а суммирование эффекта действия (изменений функций отдельных органов и систем организма, которые происходят в результате кратковременного воздействия пестицида). Сам препарат достаточно быстро разрушается или выводится из организма с мочой или другими путями. Этот тип кумуляции характерен для нестойких пестицидов, например, фосфорорганических соединений, связывающих фермент холинэстеразу (пиримифос-метила, малатиона (карбофоса), диазинона и др.), синтетических пиретроидов (дельтаметрина, альфа-циперметрина, циперметрина и др.) и других химических групп.

Материальная и функциональная кумуляция характеризуют токсическое действие пестицидов.

Особую опасность кумуляция представляет в трофических (пищевых) цепях и пирамидах, в которых человек находится на верхнем уровне. Пример такой пирамиды показан на рисунке. (фото)

Кумуляция пестицидов ведет к гибели и вырождению многих видов высших животных. Бактерии, растения, насекомые и грызуны, для уничтожения которых применяются пестициды, достаточно быстро вырабатывают устойчивость (резистентность) к ним. В это же время их естественные враги накапливают в своих организмах большие концентрации токсических веществ. Они гораздо менее способны выработать устойчивость к ядохимикатам и погибают. В результате возникает замкнутый круг: для сохранения хорошего урожая приходится использовать все более сильные пестициды и во все больших количествах, хотя со временем эти меры оказываются все менее эффективными.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Кумулятивные боеприпасы и их поражающие факторы

H 50 (Hohlladung 50 kg) — один из первых серийных кумулятивных зарядов. Применялся для разрушения оборонительных укреплений во время Второй мировой войны.

Несмотря на относительно слабое заброневое действие, кумулятивная граната при попадании в башню, как правило, убивает одного или более членов экипажа бронемашины, может вывести из строя вооружение, подорвать боекомплект. Попадание в моторное отделение делало машину неподвижной мишенью, а если на пути кумулятивной струи встречались топливопроводы, происходило воспламенение.

Виктор Мураховский отмечает, что широко распространен миф об том, что кумулятивные заряды поражают избыточным давлением и температурой, но это не соответствует действительности. Поражение защищённой цели достигается действием короткой кумулятивной струи небольшого диаметра, создающей давление в несколько тонн на квадратный сантиметр (что превышает предел текучести металлов) и пробивающей небольшое отверстие около 80 мм в броне. Весь наблюдаемый визуально взрыв кумулятивного заряда происходит до брони и избыточное давление и температура не могут проникнуть через небольшое отверстие и не являются основными поражающими факторами. Устанавливаемые внутри танков датчики давления и температуры не фиксируют существенного фугасного или термического воздействия после пробивания брони кумулятивной струей. Основной поражающий фактор кумулятивного заряда — это отрываемые осколки и капли брони. При попадании на боекомплект танка осколков и капель от пробитой брони возможно его воспламенение и детонация с разрушением бронемашины. Если кумулятивная струя и  капли   брони не поражают людей и пожаро-/взрывоопасное оборудование танка, то в целом прямое попадание даже мощного кумулятивного заряда может не вывести из строя танк.

Тяжёлые ПТУР (типа 9М120 «Атака», «Хеллфайр») при попадании в бронированные машины лёгкого класса с противопульной защитой своим синергетическим действием могут уничтожить не только экипаж, но и частично или полностью разрушить машины. С другой стороны, воздействие большинства носимых ПТС на ББМ (при отсутствии детонации боеприпасов ББМ) не столь критично — здесь наблюдается обычный эффект заброневого действия кумулятивной струи, а поражения экипажа избыточным давлением не происходит.

См. также Кумулятивно-осколочный снаряд

Экономика

Кумулятивный эффект в данной сфере называют также финансовым. Он достигается путем накопления и сосредоточения материальных средств и, как в остальных определениях, имеет «взрывной» характер.

Рассмотрим пример с точки зрения наращивания народного хозяйства страны. Правительство обязано принимать определенные решения по улучшению благосостояния нации. Ведь чем люди богаче, тем более капиталоемким становится производство. Затем растет спрос, предложение и потребление продуктов отечественного производителя. Все эти факторы повышают экономическую активность страны, создавая кумулятивный эффект в экономике. Завершающим «выбросом» станет то, что, когда данная держава выйдет на мировой рынок, она сможет, основываясь на краткосрочных решениях, обеспечить продолжительное функционирование данного процесса.

История

Пробитый взрывом кумулятивного заряда наблюдательный купол в форте Эбен-Эмаль. В центре снимка виден пролом, образованный воздействием кумулятивной струи.

В 1792 году горный инженер Франц фон Баадер высказал предположение, что энергию взрыва можно сконцентрировать на небольшой площади, используя полый заряд. Однако в своих экспериментах фон Баадер использовал чёрный порох, который не может формировать необходимую детонационную волну. Впервые продемонстрировать эффект применения полого заряда удалось лишь с изобретением высокобризантных взрывчатых веществ. Это сделал в 1883 году изобретатель Макс фон Фёрстер (Max von Foerster).

Повторно открыл кумулятивный эффект, исследовал и подробно описал его в своих работах американец Чарльз Манро (Charles Edward Munro) в 1888 году.

В Советском Союзе в 1925—1926 годах изучением зарядов взрывчатых веществ с выемкой занимался профессор М. Я. Сухаревский.

В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Hans Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности при применении металлической облицовки конуса.

Рентгено-импульсная съемка процесса, осуществленная в 1939 — начале 1940-х годов в лабораториях Германии, США и Великобритании, позволила существенно уточнить принципы действия кумулятивного заряда (традиционная фотосъёмка невозможна из-за вспышек пламени и большого количества дыма при детонации).

Кумулятивные боеприпасы впервые были применены в боевых условиях 10 мая 1940 г. при штурме форта Эбен-Эмаль (Бельгия). Тогда для подрыва укреплений диверсионным отрядом использовались переносные заряды в виде полусфер весом 12,5 и 50 кг.

Одним из неприятных сюрпризов лета 1941 года для танкистов РККА стало применение войсками Германии кумулятивных снарядов и гранат. На подбитых танках обнаруживались пробоины с оплавленными краями, поэтому снаряды получили название «бронепрожигающих». 23 мая 1942 года на Софринском полигоне были проведены испытания снаряда к 76-мм полковой пушке, разработанного НИИ-6 на основе трофейного немецкого снаряда. По результатам испытаний 27 мая 1942 года первый советский кумулятивный снаряд БП-353А принят на вооружение.

В 1949 году Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

В 1950-е годы был достигнут огромный прогресс в понимании принципов формирования кумулятивной струи. Предложены методы усовершенствования кумулятивных зарядов пассивными вкладышами (линзами), определены оптимальные формы кумулятивных воронок, применена ступенчатая облицовка конуса для компенсации вращения снаряда, разработаны специальные составы взрывчатых веществ.
Многие из обнаруженных в те далекие годы явлений изучаются и до настоящего времени.

Биотрансформация лекарственных средств

Биотрансформация ЛС – химические превращения ЛС в организме.

Биологический смысл биотрансформации ЛС: создание субстрата, удобного для последующей утилизации (в качестве энергетического или пластического материала) или в ускорении выведения ЛС из организма.

Основная направленность метаболических превращений ЛС: неполярные ЛС → полярные (гидрофильные) метаболиты, выводимые с мочой.

Выделяют две фазы метаболических реакций ЛС:

1) Метаболическая трансформация(несинтетические реакции, фаза 1) – превращение веществ за счет микросомального и внемикросомального окисления, восстановления и гидролиза

2) конъюгация (синтетические реакции, фаза 2) – биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений путем а) образования глюкуронидов б) эфиров глицерина в) сульфоэфиров г) ацетилирования д) метилирования

Влияние биотрансформации на фармакологическую активность ЛС:

1) чаще всего метаболиты биотрансформации не обладают фармакологической активностью или их активность снижена по сравнению с исходным веществом

2) в некоторых случаях метаболиты могут сохранять активность и даже превосходить по активности исходное вещество (кодеин метаболизируется до более фармакологически активного морфина)

3) иногда в ходе биотрансформации образуются токсичные вещества (метаболиты изониазида, лидокаина)

5) ряд веществ является пролекарствами, которые исходно не дают фармакологических эффектов, но в ходе биотрансформации преобразуются в БАВ (неактивная L-допа, проникая через ГЭБ, превращается в мозге в активный дофамин, при этом нет системных эффектов дофамина).

Клиническое значение биотрансформации ЛС: т. к. доза и частота приема, необходимые для достижения эффективной концентрации в крови и тканях, могут варьировать у больных из-за индивидуальных различий в распределении, скорости метаболизма и элиминации ЛС, важен их учет в клинической практике.

Влияние на биотрансформацию ЛС различных факторов:

А) Функциональное состояние печени: при ее заболеваниях клиренс ЛС обычно уменьшается, а период полуэлиминации возрастает.

Б) Влияние факторов среды: курение способствует индукции цитохрома P450, в результате чего ускоряется метаболизм ЛС в ходе микросомального окисления

В) У вегетарианцев биотрансформация ЛС замедлена

Г) у пожилых и молодых пациентов характерна повышенная чувствительность к фармакологическому или токсическому действию ЛС (у лиц пожилого возраста и у детей до 6 мес активность микросомального окисления снижена)

Д) у мужчин метаболизм некоторых ЛС происходит быстрее, чем у женщин, т. к. андрогены стимулируют синтез микросомальных ферментов печени {этанол}

Е) Высокое содержание в пище белков и интенсивная физическая нагрузка: ускорение метаболизма ЛС.

Ж) Алкоголь и ожирение замедляют метаболизм ЛС

Метаболическое взаимодействие лекарств. Болезни, влияющие на их биотрансформацию.

Метаболическое взаимодействие ЛС:

1) индукция ферментов метаболизма ЛС – абсолютное увеличение их количества и активности вследствие воздействия на них определенных ЛС. Индукция ведет к ускорению метаболизма ЛС и (как правило, но не всегда) к снижению их фармакологической активности (рифампицин, барбитураты – индукторы цитохрома P450)

2) ингибирование ферментов метаболизма ЛС – угнетение активности ферментов метаболизма под действием некоторых ксенобиотиков:

А) конкурентное метаболическое взаимодействие – ЛС с высоким аффинитетом к определенным ферментам снижают метаболизм ЛС с более низким аффинитетом к этим ферментам (верапамил)

В) прямая инактивация изоферментов цитохрома P450 (флавоноиды)

Болезни, влияющие на метаболизм ЛС:

А) болезни почек (нарушение почечного кровотока, острые и хронические заболевания почек, исходы длительных почечных заболеваний)

Б) болезни печени (первичный и алкогольный циррозы, гепатиты, гепатомы)

В) болезни ЖКТ и эндокринных органов

В) индивидуальная непереносимость некоторых ЛС (отсутствие ферментов ацетилирования – непереносимость аспирина)

Кумулятивные боеприпасы и их поражающие факторы

H 50 (Hohlladung 50 kg) — один из первых серийных кумулятивных зарядов. Применялся для разрушения оборонительных укреплений во время Второй мировой войны.

Несмотря на относительно слабое заброневое действие, кумулятивная граната при попадании в башню, как правило, убивает одного или более членов экипажа бронемашины, может вывести из строя вооружение, подорвать боекомплект. Попадание в моторное отделение делало машину неподвижной мишенью, а если на пути кумулятивной струи встречались топливопроводы, происходило воспламенение.

Виктор Мураховский отмечает, что широко распространен миф об том, что кумулятивные заряды поражают избыточным давлением и температурой, но это не соответствует действительности. Поражение защищённой цели достигается действием короткой кумулятивной струи небольшого диаметра, создающей давление в несколько тонн на квадратный сантиметр (что превышает предел текучести металлов) и пробивающей небольшое отверстие около 80 мм в броне. Весь наблюдаемый визуально взрыв кумулятивного заряда происходит до брони и избыточное давление и температура не могут проникнуть через небольшое отверстие и не являются основными поражающими факторами. Устанавливаемые внутри танков датчики давления и температуры не фиксируют существенного фугасного или термического воздействия после пробивания брони кумулятивной струей. Основной поражающий фактор кумулятивного заряда — это отрываемые осколки и капли брони. При попадании на боекомплект танка осколков и капель от пробитой брони возможно его воспламенение и детонация с разрушением бронемашины. Если кумулятивная струя и  капли   брони не поражают людей и пожаро-/взрывоопасное оборудование танка, то в целом прямое попадание даже мощного кумулятивного заряда может не вывести из строя танк.

Тяжёлые ПТУР (типа 9М120 «Атака», «Хеллфайр») при попадании в бронированные машины лёгкого класса с противопульной защитой своим синергетическим действием могут уничтожить не только экипаж, но и частично или полностью разрушить машины. С другой стороны, воздействие большинства носимых ПТС на ББМ (при отсутствии детонации боеприпасов ББМ) не столь критично — здесь наблюдается обычный эффект заброневого действия кумулятивной струи, а поражения экипажа избыточным давлением не происходит.

См. также Кумулятивно-осколочный снаряд

Повторное действие лекарственных средств

При повторном
применении Л.В. может наблюдаться
усиление или ослабление фармакологического
эффекта.

    1. Кумуляция– накопление

  1. Материальная
    кумуляция
    – накопление самого
    вещества.

    1. абсолютная
      кумуляция
      – связана со свойствами
      Л.В. возникает при длительном использовании
      веществ, которые долго задерживаются
      в организме и очень медленно выводятся
      (барбатуры, СГ, бромады, антикоагулянты
      непрямого типа действия…)

    2. относительная
      кумуляция
      – возникает при заболевании
      печени или почек, т.е. тех органов,
      которые обеспечивают разрушение и
      выведение чужеродных веществ. Коррекция
      кумуляции: ↓ дозы, ↓ числа приемов

  2. Функциональная
    кумуляция
    –накопление
    «фармакологического эффекта», т.е.
    вещество из организма выводится быстро,
    но накапливаются те изменения, которые
    оно вызвало (антикоагуленты непрямого
    типа действия, этанол «белая горячка»,
    симпатолитики и др.)

    1. Привыкание(толерантность = устойчивость) –
      уменьшение эффекта при длительном
      применении Л.В. (снотворные, гипотензивные,
      аналь-гетики, слабительные, НГ и др.).
      Для получения эффекта необходимой
      силы требуется увеличение дозы.

ПРИЧИНЫ: а) понижение чувствительности
рецептаров;
б) ускорение разрушения Л.В.;
в) включение
компенсаторных реакций организма (АГ)
г) истощение эндогенных
метаболитов, участвующих в фармакодинамике
Л.В. (НГ, противодиабетические произв.
сульфанилмочевины).

Для предотвращения
привыкания рационально комбинировать
препараты с раз-личным механизмом
действия.

Тахифилаксия
— острая форма привыкания. Уменьшение
эффекта при повторном введении Л.В.
через короткие промежутки времени
(эфедрин).

Лекарственная
зависимость
– наркомания, пристрастие.
Это непреодолимое стремление к приему
Л.П. с целью устранения физического или
психического дискомфорта. Часто
характерно для веществ, действующих на
ЦНС (психотропные). Такие препараты
вызывают ощущение психического комфорта,
хорошее самочувствие и настроение,
эйфорию, иногда необычные психические
реакции, галлюцинации, ощущение прилива
сил или приятного расслабления.

Выделяют:

А) психическую
зависимость
– отмена препарата
вызывает эмоциональный дискомфорт,
ухудшение настроения, бессонницу,
наличие неприятных пережива-ний и
ощущений;

Б) физическую
зависимость
– отмена сопровождается
расстройствами в деятельности различных
органов и систем, т.е. соматическими
нарушениями;

В)абстиненция– синдром отмены,
развивающийся в результате падения
кон-центрации наркотического вещества
в крови. Сопровождается тяжелыми
эмоциональными и вегетативными
расстройствами вплоть до летального
исхода (беспокойство, тревога, нарушение
сна, тошнота, рвота, потливость, сильные
боли, слезотечение, диарея,tо,
АД, тахикардия, нарушения дыхания и
др.)

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Методы исследования[править | править код]

Для исследования кумулятивности используются различные методы, основанные на учёте гибели животных при повторном воздействии изучаемого вещества. Предпочтение зачастую отдаётся методу Lim’а и соавт., позволяющему оценить в одном исследовании не только кумулятивные свойства вещества при его воздействии на организм, но и развитие толерантности (привыкания) к нему.

Схема изучения кумуляции методом субхронической токсичности по Lim’управить | править код

В первые четыре дня ежедневно вводится доза, составляющая десятую часть от DL50 (DL50{\displaystyle DL_{50}} — доза, вызывающая гибель половины в группе животных; устанавливается в ходе исследования острой токсичности). Затем дозу повышают в 1,5 раза и вводят последующие четыре дня. (После введения вещества в восьмой раз накопленная доза составляет одну полулетальную дозу.) При необходимости исследование продолжают и далее, каждые четыре дня повышая дозу в 1,5 раза от предыдущего уровня до тех пор, когда погибнет половина животных (обычно 5 из 10). Рассчитывают коэффициент кумуляции:

Kk=DL50;nDL50;1,{\displaystyle K_{k}={\frac {DL_{50;n}}{DL_{50;1}}},}

где Kk{\displaystyle K_{k}} — коэффициент кумуляции, DL50;n{\displaystyle DL_{50;n}} — средняя смертельная доза накопленная при n-кратном введении, DL50;1{\displaystyle DL_{50;1}} — средняя смертельная доза при однократном введении. При Kk<1{\displaystyle K_{k}<1} — говорят о кумуляции (в смысле усиления действия яда), если Kk>1{\displaystyle K_{k}>1} — о толерантности. Полученная качественная (в лучшем случае порядковая) оценка неформально используется при планировании хронического эксперимента. Альтернативой является количественное определение коэффициента кумуляции, который даёт возможность прогнозировать вероятность гибели животных при планировании исследований хронической токсичности.

Количественное определение коэффициента кумуляцииправить | править код

Коэффициент кумуляции (k) определяется, как доля вещества (или эффекта) продолжающая оказывать своё действие ко времени следующего введения таким образом, что последовательность эффективных доз Di{\displaystyle D_{i}} представляется в виде:

Di=D+k⋅Di−1,i=⋯n,D−1=,{\displaystyle D_{i}{=}D_{0}+k\cdot D_{i-1},i{=}0\cdots n,D_{-1}=0,}

где D{\displaystyle D_{0}} — реально вводимая постоянная или изменяемая как в схеме Lim’а доза. Вероятность гибели животных от последовательности из n+1 введений рассчитывают как вероятность появления хотя бы одного из совокупности событий:

P=1−∏i=n(1−pi),{\displaystyle P=1-\prod _{i=0}^{n}(1-p_{i}),}

где pi{\displaystyle p_{i}} — вероятность гибели животных при воздействии вещества в эффективной дозе Di{\displaystyle D_{i}} определяется из зависимости p=Φ(x),{\displaystyle p{=}\Phi (x),} где Φ(x){\displaystyle \Phi (x)} — функция нормального распределения, параметры которого определяются методом пробит анализа в ходе исследования острой токсичности. Коэффициент кумуляции в этом определении выступает в качестве меры зависимости между последовательно вводимыми дозами D{\displaystyle D_{0}}. Численное значение коэффициента кумуляции подбирается таким, чтобы последовательность Di{\displaystyle D_{i}} соответствовала вероятности P полученной в эксперименте по исследованию кумулятивности.

Качественно величину коэффициента в диапазоне от -1 до 0 можно интерпретировать как развитие толерантности, 0 — как отсутствие зависимости между повторными воздействиями вещества, от 0 и выше — как кумуляцию (больше 1 — кумуляция в узком смысле слова). Полученную оценку можно использовать для определения потенциального риска гибели от применения вещества в различных дозах и сроках, либо, задавая приемлемую вероятность, определять соответствующие режимы введения исследуемого вещества. Очевидно, что прогностическая сила оценки ограничена некоторой областью вокруг точки (дозы, кратность) в которой получено экспериментальное значение P при исследовании кумулятивности. Например, легко представить, что определив в краткосрочном эксперименте привыкание к этиловому спирту, не стоит рассчитывать на устойчивость этого качества при воздействии больших доз в длительном эксперименте.

Биотрансформация лекарственных средств

Биотрансформация представляет собой
метаболические превра­щения
лекарственных средств. В большинстве
реакций образуются метаболиты, более
полярные, чем исходные лекарственные
средства. Полярные метаболиты хуже
растворяются в липидах, но обладают
вы­сокой растворимостью в воде, меньше
подвергаются энтерогепатической
циркуляции (выведение с желчью в кишечник
и повторное вса­сывание в кровь) и
реабсорбции в почечных канальцах. Без
биотранс­формации одна терапевтическая
доза снотворного средства этаминала
могла бы находиться в организме
100 лет.

Эндобиотики подвергаются превращениям
под влиянием специ­фических ферментов,
осуществляющих метаболизм их эндогенных
ана­логов. Ксенобиотики используют
для метаболизма ферменты с малой
субстратной специфичностью, например,
окисляются при участии ци-тохрома Р-450,
созданного в эволюции 3,5
миллиарда лет тому назад для инактивации
стероидов.

Биотрансформация ксенобиотиков
происходит в печени (90-95%),
слизистой оболочке тонкого кишечника,
почках, легких, коже, крови. Наиболее
изучены процессы биотрансформации на
мембранах глад­кого эндоплазматического
ретикулума (ЭПР) печени. При гомогениза­ции
и ультрацентрифугировании клеток
канальцы ЭПР разрываются и превращаются
в функционально активные фрагменты
— микросомы. Реакции биотрансформации
протекают также в ядре, цитозоле,
митохондриях, плазматической мембране.

Процессы биотрансформации разделяют
на 2 фазы. В реакциях первой
фазы — метаболической
трансформации молекулы лекарствен­ных
средств подвергаются окислению,
восстановлению или гидроли­зу.
Большинство лекарств преобразуется в
неактивные метаболиты, но также могут
появляться активные и токсические
производные (табл. 3.1). Во
второй фазе — реакциях
конъюгации лекарственные средства
присоединяют ковалентной связью полярные
фрагменты с образова­нием неактивных
продуктов. Для реакций конъюгации
необходима за­трата энергии.

Таблица 3.1

Активные метаболиты лекарственных
средств

Лекарственное
средство

Активный
метаболит

Амитриптилин

Нортриптилин

Анаприлин
(пропраналол)

Гидроксипропраналол

Бутадион

Оксифенилбутазон

Дигитоксин

Дигоксин

Имипрамин

Дезипрамин

Кислота
ацетилсалициловая

Кислота
салициловая

Кодеин

Морфин

Кортизон

Гидрокортизон

Метилдопа

Метилнорадерналин

Новокаинамид

N-ацетилновокаинамид

Сибазон
(диазепам)

Нордазепам,
оксазепам

Спиронолактон

Канренон

Теофиллин

Кофеин

Хлозепид
(хлордиазепоксид)

Деметилзлордиазепоксид,
нордазепам, оксазепам

Интересные факты

  • Первоначально кумулятивные снаряды назывались бронепрожигающими, так как считалось (исходя из формы пробитой воронки), что они именно прожигают броню. В реальности же при подрыве заряда температура облицовки достигает всего лишь 200—600 °C, что значительно ниже температуры её плавления.
  • Распространено мнение, что при попадании кумулятивной струи в танк или иную броневую цель находящиеся внутри погибают от баротравмы при резком повышении давления в замкнутом объеме после пробития брони, и это одна из причин, почему десант БМП предпочитает ездить снаружи, на верхнем листе, а не внутри машины, а также поэтому некоторые танкисты предпочитают езду с открытыми люками, для сброса давления. В реальности же всё наоборот: расширяющиеся газы сдетонировавшего кумулятивного заряда не могут проникнуть за пробитую броню в образовавшееся небольшое отверстие, а вот открытые люки приводят к «затеканию» ударной волны и поражению экипажа.

История

Пробитый взрывом кумулятивного заряда наблюдательный купол в форте Эбен-Эмаль. В центре снимка виден пролом, образованный воздействием кумулятивной струи.

В 1792 году горный инженер Франц фон Баадер высказал предположение, что энергию взрыва можно сконцентрировать на небольшой площади, используя полый заряд. Однако в своих экспериментах фон Баадер использовал чёрный порох, который не может формировать необходимую детонационную волну. Впервые продемонстрировать эффект применения полого заряда удалось лишь с изобретением высокобризантных взрывчатых веществ. Это сделал в 1883 году изобретатель Макс фон Фёрстер (Max von Foerster).

Повторно открыл кумулятивный эффект, исследовал и подробно описал его в своих работах американец Чарльз Манро (Charles Edward Munro) в 1888 году.

В Советском Союзе в 1925—1926 годах изучением зарядов взрывчатых веществ с выемкой занимался профессор М. Я. Сухаревский.

В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Hans Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности при применении металлической облицовки конуса.

Рентгено-импульсная съемка процесса, осуществленная в 1939 — начале 1940-х годов в лабораториях Германии, США и Великобритании, позволила существенно уточнить принципы действия кумулятивного заряда (традиционная фотосъёмка невозможна из-за вспышек пламени и большого количества дыма при детонации).

Кумулятивные боеприпасы впервые были применены в боевых условиях 10 мая 1940 г. при штурме форта Эбен-Эмаль (Бельгия). Тогда для подрыва укреплений диверсионным отрядом использовались переносные заряды в виде полусфер весом 12,5 и 50 кг.

Одним из неприятных сюрпризов лета 1941 года для танкистов РККА стало применение войсками Германии кумулятивных снарядов и гранат. На подбитых танках обнаруживались пробоины с оплавленными краями, поэтому снаряды получили название «бронепрожигающих». 23 мая 1942 года на Софринском полигоне были проведены испытания снаряда к 76-мм полковой пушке, разработанного НИИ-6 на основе трофейного немецкого снаряда. По результатам испытаний 27 мая 1942 года первый советский кумулятивный снаряд БП-353А принят на вооружение.

В 1949 году Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

В 1950-е годы был достигнут огромный прогресс в понимании принципов формирования кумулятивной струи. Предложены методы усовершенствования кумулятивных зарядов пассивными вкладышами (линзами), определены оптимальные формы кумулятивных воронок, применена ступенчатая облицовка конуса для компенсации вращения снаряда, разработаны специальные составы взрывчатых веществ.
Многие из обнаруженных в те далекие годы явлений изучаются и до настоящего времени.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий