Летучие органические соединения

Отравляющий газ GB

Это вещество больше известно под названием зарин. В сентябре 2013 года ООН подтвердила, что атака с применением химического оружия с использованием специально разработанных ракет, которые распространяли газ зарин по повстанцам в пригороде сирийской столицы, произошла месяцем ранее. Генеральный секретарь ООН Пан Ги Мун заявил, что это наиболее значимое подтвержденное применение химического оружия против мирного населения с тех пор, как Саддам Хусейн использовал его в Халабдже в 1988 году.

Газ зарин является летучим, но токсичным агентом нервно-паралитического действия, созданный на основе фосфора. Одной капли размером с булавочную головку достаточно, чтобы быстро убить взрослого человека. Это бесцветная жидкость без запаха сохраняет агрегатное состояние при комнатной температуре, но быстро испаряется при нагревании. После освобождения он быстро распространяется в окружающей среде. Как и в случае с VX, симптомы включают головную боль, слюноотделение и выделение слез с последующим постепенным параличом мышц и возможную смерть.

Зарин был разработан в 1938 году в Германии, когда ученые исследовали пестициды. Культ Аум Синрике использовал его в 1995 году в токийском метро. Хотя атака вызвала массовую панику, она убила только 13 человек, потому что агент был распылен в жидкой форме. Чтобы максимизировать потери, зарин должен быть не только газом, но и его частицы должны быть достаточно маленькими, чтобы могли легко всасываться через слизистую оболочку легких, но достаточно тяжелыми, чтобы они не выдыхались.

Ароматические углеводороды

Бензол широко применяют в качестве растворителя и сырья в химической промышленности. Наряду с другими природными углеводородами он входит в состав автомобильного топлива. Бензол очень токсичен, особенно в высоких концентрациях.

При употреблении бензола внутрь или кратковременном вдыхании насыщенных паров проявляется преимущественно его нейротоксическое действие. Легкое отравление бензолом проявляется дурнотой, слабостью, эйфорией, головной болью, тошнотой, рвотой, чувством тяжести в груди, неустойчивостью при ходьбе. При тяжелом отравлении возможны нечеткость зрения, тремор, учащенное поверхностное дыхание, аритмия, паралич и нарушение сознания.

Хроническое отравление бензолом (обычно вследствие вдыхания паров или попадания на кожу) приводит к поражению ЦНС, ЖКТ и может проявляться головной болью, потерей аппетита, сонливостью, раздражительностью, бледностью. Однако ведущий симптом — апластическая анемия. К снижению числа эритроцитов приводит торможение дифференцировки ранних предшественников кроветворения, которые очень чувствительны к действию бензола (Andrews, Snyder, 1991).

Длительное воздействие бензола опасно еще и тем, что повышает риск лейкозов (Rinsky et al., 1987; Mehlman,1991). Эпидемиологические исследования показывают, что причиной повышения смертности среди работников шинной и обувной промышленности, часто контактирующих с бензолом, в одинаковой степени являются апластическая анемия и лейкозы. Международным агентством по изучению рака и Агентством по охране окружающей среды бензол отнесен к канцерогенам. При метаболизме бензола образуется целый ряд ароматических и алифатических соединений, а также их конъюгатов (Snyder et al., 1993). Полагают, что к лейкозам и апластической анемии приводит не какой-то один из этих метаболитов, а их комбинация (Snyder et al., 1993). Токсическое действие бензола на костный мозг может быть обусловлено также ковалентным связыванием высокоактивных побочных продуктов его метаболизма с некоторыми белками и ДНК (Kalf et al., 1987).

Толуол (С6Н5СН3) широко применяют как растворитель для красок, лаков, клеев, эмалей, а также как сырье в производстве ряда органических соединений. Толуол обладает угнетающим действием на ЦНС и даже в низких концентрациях вызывает утомляемость, слабость и спутанность сознания. Именно действие толуола на ЦНС лежит в основе пристрастия к вдыханию паров клея. В отличие от бензола, толуол не повышает риск лейкозов и апластической анемии. В состав многих клеев наряду с толуолом входят и другие растворители, поэтому лица, вдыхающие пары клея, подвергаются комбинированному токсическому действию.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Что влияет на активность

В природе явление фитонцидов универсально. Вместе с тем существуют различия в фитонцидной активности у разных видов. Причем фитонциды листьев деревьев отличаются по своему противомикробному действию от плодов и т. д.

  • Фитонцидная активность растения может изменяться в зависимости от времени года, от погоды, времени суток (утром до 8 часов и вечером после 19 часов количество фитонцидов, производимых растениями, в несколько раз меньше, чем днем).
  • Деревья, оказывающиеся в тени, выделяют меньше фитонцидов.
  • В березовом и сосновом лесах больше света и больше фитонцидов, чем, например, в смешанном.
  • На количество продуцируемых летучих веществ может влиять также температура воздуха и его влажность: в жаркую погоду концентрация фитонцидов существенно возрастает (в 1,5– 1,8 раза), а при повышении влажности воздуха – уменьшается.

Химические свойства

Пропин проявляет типичные для алкинов химические свойства, в частности, вступает в реакции присоединения. При гидратации пропина в присутствии ртути (реакция Кучерова) образуется ацетон. Взаимодействие с HCN даёт метакрилонитрил.

Пропин также проявляет кислотные свойства, например, при пропускании через аммиачные растворы солей Ag(I) и Cu(I) пропин образует ацетилениды.

Пропин может изомеризоваться в аллен в присутствии силикатов и других катализаторов.

При действии концентрированной серной кислоты аллилен тримеризуется, образуя мезитилен (1,3,5-триметилбензол):

3С2Н(СН3) → С6Н3(СН3)3

При УФ-облучении полимеризуется.

Действие летучих наркотиков

Летучие наркотические вещества действуют примерно так же, как хирургический наркоз или алкоголь. Веществ таких очень много, но объединяет их одно – они способны растворять жиры. Бензин, растворители, газ для зажигалок разрушают, таким образом, всю нервную систему, так как именно там сосредоточено большое количество жиров. Именно из-за этого человек, вдыхая пары делириантов, чувствует опьянение.

Из-за того, что практически все наркотические ингалянты способны растворяться в жирах, они имеют обыкновение оседать в жировых тканях человеческого организма. Это значит, что пройдет еще много времени, прежде чем организм сможет избавиться от наркотического вещества. Со стиролом проводился эксперимент, в котором 210 грамм стирола на 1 кубометр вдыхал мужчина в течение двух часов. По сравнению с тем, сколько употребляется токсикоманами – эти дозировки предельно малы. Однако, в организме стирол держался не менее 22-х часов.

Летучие наркотические вещества, как было сказано выше, имеют свойство накапливаться в организме, тем самым разрушая ткань нервных окончаний и мозга. В нервную систему летучие вещества попадают через кровь, а в кровь – через легкие при вдыхании наркотических паров человеком. От такого опьянения страдает в первую очередь кора головного мозга, следом за ним мозжечок, и только потом – продолговатый мозг. Однако если опьянение летучими наркотическими веществами дойдет до продолговатого мозга – могут возникнуть проблемы с дыханием человека, и впоследствии – летальный исход.

Многие токсикоманы прекращают вдыхать наркотические пары ранее, чем опьянение дойдет до продолговатого мозга, так как желаемое состояние зачастую достигается намного быстрее. Но уже и на этой стадии токсикомана может мучить рвота или тошнота. К тому же у заядлых токсикоманов такие состояния наступают очень редко. Но это отнюдь не так хорошо, как кажется, ведь отсутствие рвоты или тошноты означает замедление нормальных физических реакций человека. Тошнота или рвота обязательно будут, но значительно позже. Чем длительней и чаще наркоман будет вдыхать пары наркотических веществ – тем большие области мозга будут отравляться ими до того, как наступит тошнота.

Отчасти опьянение вызывается самим летучим наркотическим веществом, но это происходит еще и потому, что мозгу не хватает кислорода. Как правило, опьянение наступает очень быстро, и примерно с той же скоростью оно исчезает. Опьянение в среднем длится до тридцати минут, после чего никакого эффекта не остается вовсе. Более длительным опьянение может быть в том случае, если токсикоманом будут использоваться высокие концентрации разнообразных ядов, например, использовать летучие наркотические вещества, как только начинает отпускать опьянение, или вдыхать токсичные пары при помощи полиэтиленового пакета.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Классы опасности веществ и перечень

Всего существует 5 классов опасности вредных химических веществ.

Из них первые четыре являются вредными и ядовитыми, различаются между собой по уровню токсичного влияния на экосистему и людей.

Вредное воздействие химических элементов уменьшается с каждым классом. Неопасными считаются компоненты, отнесенные по результатам биотестирования к 5 классу.

Далее приведем перечень химических веществ, которые относятся к 1, 2, 3, 4 и 5 классам опасности.

1 класс

Компоненты, относящиеся к первому классу опасности вредных загрязняющих веществ, оказывают чрезвычайно вредное воздействие на окружающий мир. Самостоятельно они не разлагаются. Их нахождение в экосистеме приводит к необратимым отрицательным последствиям — природа не восстанавливается даже после ликвидации источника заражения.

К крайне опасным относятся элементы, соединения:

  • ртуть;
  • селен;
  • гексахлорбутадиен;
  • кадмий;
  • смесь серной кислоты с бихроматом калия;
  • плавиковая кислота;
  • цинк;
  • соли мышьяка, свинца;
  • растворы с солями, оксидами ртути;
  • фтороводород;
  • смеси негалогенированных органических частиц с взрывчатыми веществами.

Основными источниками таких веществ являются промышленные предприятия.

2 класс

Загрязняющие вещества второго класса сильно нарушают экосистему, разлагаются более 30 лет. После удаления опасного источника природа долго восстанавливается.

К ним относятся:

  • хлор;
  • хром;
  • каустик;
  • медь;
  • анилин;
  • никель;
  • серная кислота;
  • фенол;
  • бор;
  • сероводород;
  • сероуглерод;
  • кобальт;
  • молибден;
  • сурьма;
  • формальдегид;
  • нитриты.

3 класс

Большую часть загрязняющих компонентов, относящихся к третьему классу опасности, и их смесей вырабатывают химические предприятия, лаборатории.

Разлагаются более 10 лет отходы и вещества, содержащие:

  • марганец;
  • барий;
  • этиловый спирт;
  • ванадий;
  • серебро;
  • вольфрам;
  • фосфаты;
  • стронций;
  • ацетофен;
  • сланцевая зола;
  • ксилол;
  • этилбензол;
  • изопропиловый, метиловый, пропиловый спирты;
  • акриловая, уксусная кислоты.

Основные источники загрязнений связаны с автомобильной, нефтегазовой промышленностью.

4 класс

К малоопасным веществам четвертого класса относятся те, что оказывают небольшое вредное воздействие на биосферу.

Они самостоятельно разлагаются от 3 до 10 лет.

После устранения источника загрязнения природа восстанавливается за несколько лет.

Такими ЗВ являются:

  • аммиак;
  • бутан;
  • гексан;
  • сульфаты;
  • алюминий;
  • циклогексан;
  • этанол;
  • метан;
  • этилацетат;
  • бутилен;
  • нафталин;
  • диэтиловый эфир;
  • ацетон;
  • бензин;
  • скипидар.

Вырабатываются при производстве пищевой продукции, товаров повседневного назначения. Также отходы с элементами 4 класса образуются в сельском, рыболовном хозяйстве, при добыче полезных ископаемых.

Применение горючих газов

Горючие газы обладают высокой теплотой сгорания, а потому являются высокоэкономичным энергетическим топливом. Широко применяются для коммунально-бытовых нужд, на электростанциях, в металлургии, стекольной, цементной и пищевой промышленности, в качестве автомобильного топлива, при производстве строительных материалов.

Использование горючих газов в качестве сырья для производства таких органических соединений как формальдегид, метиловый спирт, уксусная кислота, ацетон, ацетальдегид, обусловлено наличием в их составе углеводородов. Метан, как основной компонент горючих природных газов, широко применяется для производства различных органических продуктов. Для получения аммиака и различного рода спиртов используется синтез-газ – продукт конверсии метана кислородом или водяным паром. Пиролизом и дегидрогенизацией метана получают ацетилен, наряду с водородом и сажей. Водород, в свою очередь, используется для синтеза аммиака. Горючие газы, и в первую очередь этан, применяют при получении этилена и пропилена, которые в дальнейшем используются в качестве сырья для производства пластмасс, искусственных волокон и синтетических каучуков.

Перспективным видом топлива для многих сфер народного хозяйства является сжиженный метан. Использование сжиженных газов во многих случаях дает большую экономическую выгоду, позволяя снизить материалозатраты на транспортировку и решить проблемы газоснабжения в отдельных районах, позволяет создавать запасы сырья для нужд химической промышленности.

Антропогенные источники

Антропогенные источники выбрасывают около 142 (1,42 10 11 кг) углерода в год в виде ЛОС.

Конкретный компонент

Основным источником искусственных ЛОС являются покрытия, особенно краски и защитные покрытия. Растворители необходимы для нанесения защитной или декоративной пленки. Ежегодно производится около 12 миллиардов литров красок. Типичными растворителями являются алифатические углеводороды, этилацетат , простые эфиры гликоля и ацетон . В связи с ценами, экологическими соображениями и нормативными требованиями предприятия лакокрасочной промышленности все чаще переходят на водные растворители .

В США существует два стандартизированных метода измерения ЛОС: один разработан Национальным институтом безопасности и гигиены труда (NIOSH), а другой — OSHA. В каждом методе используется однокомпонентный растворитель; Однако нельзя отбирать пробы бутанола и гексана на одной и той же матрице пробы с использованием методов NIOSH или OSHA.

Бензол , содержащий ароматические летучие органические соединения , выделяемый из выдыхаемого сигаретного дыма, считается канцерогенным и у курильщиков в десять раз выше, чем у некурящих.

Агентство по охране окружающей среды обнаружило, что концентрация ЛОС в воздухе помещений в 2–5 раз выше, чем в наружном воздухе, а иногда и намного больше. Во время определенных видов деятельности уровень содержания ЛОС в помещении может в 1000 раз превышать уровень внешнего воздуха. Исследования показали, что отдельные выбросы ЛОС сами по себе не так высоки в помещениях, но общие концентрации ЛОС (TVOC) в помещении могут быть в пять раз выше, чем уровни ЛОС на открытом воздухе. В частности, новые здания способствуют высочайшему уровню выделения ЛОС в помещениях из-за большого количества новых материалов, одновременно генерирующих частицы ЛОС за такой короткий период времени. Помимо новых зданий, многие потребительские товары выделяют летучие органические соединения, поэтому общая концентрация летучих органических соединений в помещении намного выше.

Концентрация ЛОС в помещении зимой в три-четыре раза выше, чем концентрация ЛОС летом. Высокие уровни ЛОС в помещении объясняются низкой скоростью воздухообмена между внутренней и внешней средой в результате плотно закрытых окон и все более широкого использования увлажнителей .

Измерения качества воздуха в помещении

Измерение ЛОС из воздуха в помещении выполняется с помощью сорбционных трубок, например, Tenax (для ЛОС и SVOC) или картриджей DNPH (для карбонильных соединений) или детектора воздуха. ЛОС адсорбируются на этих материалах, а затем десорбируются либо термически (Tenax), либо путем элюирования (DNPH), а затем анализируются с помощью ГХ-МС / ПИД или ВЭЖХ . Для контроля качества этих измерений ЛОС требуются эталонные газовые смеси. Кроме того, продукты, выделяющие летучие органические соединения, используемые внутри помещений, например, строительные изделия и мебель, исследуются в камерах для испытаний на выбросы в контролируемых климатических условиях. Для контроля качества этих измерений проводятся циклические испытания, поэтому в идеале требуются стандартные образцы с воспроизводимым излучением.

Регулирование выбросов ЛОС внутри помещений

В большинстве стран в отношении качества воздуха в помещении используется отдельное определение ЛОС, которое включает каждое органическое химическое соединение, которое может быть измерено следующим образом: адсорбция из воздуха на Tenax TA, термодесорбция, газохроматографическое разделение на 100% неполярной колонке ( диметилполисилоксан ). ЛОС (летучие органические соединения) — это все соединения, которые появляются на газовой хроматограмме между н- гексаном и н- гексадеканом включительно . Появившиеся ранее соединения называются VVOC (очень летучие органические соединения); Соединения, появляющиеся позже, называются SVOC (полулетучие органические соединения).

Франция , Германия и Бельгия ввели правила, ограничивающие выбросы ЛОС от коммерческой продукции, а промышленность разработала множество добровольных экологических маркировок и систем рейтингов, таких как EMICODE, M1, Blue Angel и комфорт воздуха в помещении. В Соединенных Штатах существует несколько стандартов; Стандарт Калифорнии CDPH Раздел 01350 является наиболее распространенным. Эти правила и стандарты изменили рынок, что привело к увеличению количества продуктов с низким уровнем выбросов.

Самый популярный отравляющий газ

Горчичный газ (иприт), также известный как серая горчица, получил свое название от запаха гнилой горчицы или чеснока и лука. Он относится к группе блистерных агентов, которые воздействуют на глаза, дыхательные пути и кожу, сначала как раздражитель, а затем как яд для клеток организма. Когда кожа подвергается воздействию, она краснеет и горит в течение нескольких часов, прежде чем появляются большие волдыри, которые вызывают сильные рубцы и боль. Глаза будут опухать, слезиться, а через несколько часов после воздействия возможна слепота. При вдыхании или проглатывании у жертв этого смертельного газа появляются чихание, хрипота, кашель с кровью, боль в животе и рвота.

Однако воздействие горчичного газа не всегда смертельно. Когда он был впервые использован в Первой мировой войне, он убил только 5 % людей, подвергшихся воздействию. Из-за своих свойств он стал популярным химическим оружием, которое использовалось в обеих мировых войнах, во время гражданской войны в Йемене и ирано-иракской войне.

Наряду с ужасными физическими эффектами горчичный газ является химически стабильным и очень стойким. Его пары более чем в шесть раз тяжелее воздуха и остаются на земле в течение нескольких часов. Это сделало его особенно полезным для отравления траншей противника. Он остается токсичным в течение одного или двух дней при средних погодных условиях и от недель до месяцев в очень холодных условиях. Более того, стойкость может быть увеличена путем загущения агента: растворения его в нелетучих растворителях. Это создает значительные проблемы для защиты, дезактивации и лечения.

Вероятность его использования вынуждает войска противника носить полную защитную экипировку, тем самым снижая их эффективность. Но защитное снаряжение не всегда срабатывает. Например, противогазов часто недостаточно. Во время ирано-иракской войны горчичный газ просачивался через маски, когда бороды молодых иранцев, обязательные к ношению, нарушали герметичность масок. Горчичный газ также легко проникает через одежду, обувь или другие материалы.

Нормативные документы

Рассмотрим основные требования нормативных документов к горючим газам.

Учитывая высокую степень взрывопожарной опасности горючих газов, специалистами исследовательских центров и предприятий, занимающихся добычей, транспортировкой, переработкой и хранением таких веществ, их смесей, подготовлены и утверждены на федеральном уровне немало нормативных документов, направленных на обеспечение безопасности людей, оборудования, строительных объектов, среди которых:

  • ТР ТС 012/2011, устанавливающий требования как к электрическому, так и технологическому оборудованию, предназначенному для эксплуатации во взрывоопасных средах.
  • Правила безопасного проведения газоопасных, ремонтных, включая земляные и огневых видов работ, что выполняются на опасных промышленных производствах, утвержденные Федеральной службой по технадзору.

Согласно данным правилам, при необходимости выполнения газоопасных видов работ в помещениях, воздушных зонах с возможным выбросом взрывопожароопасных летучих веществ, смесей, нужно использовать:

  • Переносные светильники, устройства связи, что соответствуют по заводскому взрывозащищенному исполнению взрывоопасным смесям в рабочих зонах.
  • Искробезопасный ручной, механизированный, электрический инструмент, рабочую обувь.
  • Устройства защиты дыхательных путей.
  • При этом разъемные устройства подключения всего используемого передвижного, переносного взрывозащищенного электрического оборудования, инструмента следует размещать вне пространства взрывоопасных зон, где проводятся работы.

Много требований к горючим газам, способным создавать взрывопожароопасные среды; оборудованию, способному безопасно эксплуатироваться в условиях загазованности, изложены в нескольких национальных стандартах:

ГОСТ 31610.0-2014, об общих требованиях к конструированию, испытаниям, маркированию всех видов электрического, технологического оборудования, что предназначено для эксплуатации во взрывоопасной среде в стандартных атмосферных условиях.

Важно знать: такие условия параметров среды по отношению к возможности взрыва соответствуют температуре от – 20 до 60℃, давлению до 1,1 атмосферы, содержанию кислорода около 21% объема.

  • ГОСТ Р МЭК 60079-20-1-2011, устанавливающий классификацию, характеристики, методики испытаний взрывопожароопасных газов, паров.
  • ГОСТ 30852.9-2002, устанавливающий квалификацию взрывоопасных зон, где существуют возможности воспламенения смесей горючих газов с кислородом воздуха при стандартных условиях эксплуатации оборудования.
  • ГОСТ 30319.1-2015, в котором изложены методики расчета свойств природного газа.

Требования к безопасности работ, производственным и складским объектам, связанным с обращением горючих газов, также приведены в «ППР в РФ» – основных правилах ПБ на территории России.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий