Вот как твое тело узнает того единственного

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Факторы, влияющие на потребность в тепле

Тепловая мощность зависит от площади помещения, климата региона, степени утепления здания

К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:

  • полный объем нагреваемых пространств;
  • тип и качество утеплительного материала;
  • климатическая зона, в которой располагается здание.

От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.

О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.

Для прибора (батареи отопления)

Степень теплопроводности металлов – из некоторых изготавливают радиаторы

При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:

  • показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
  • площадь поверхности, отдающей тепло;
  • теплопроводность используемого материала.

В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Ижевск 2008

УДК
621.

Определение
количества выделяющихся вредностей.
Методическое пособие по курсу лекций
по дисциплине «Теоретические основы
создания микроклимата в помещении»
раздел «Определение количества
выделяющихся вредностей в помещениях».

Составитель:
старший преподаватель И. Н. Булдакова

Методическое
пособие содержит методики и справочные
данные для определения количества
выделяющихся вредностей в помещении.
Пособие будет полезно при изучении
курсов «Теоретические основы создания
микроклимата в помещении», «Вентиляция
общественного здания», «Промышленная
вентиляция», «Кондиционирование воздуха
и холодоснабжение».

ОПРЕДЕЛЕНИЕ
КОЛИЧЕСТВА ВЫДЕЛЯЮЩИХСЯ ВРЕДНОСТЕЙ.

Методическое пособие по способам
определения количества выделяющихся
вредностей в помещениях.

Предназначено
для студентов специальности 270109
«Теплогазоснабжение и вентиляция»
очной и заочной форм обучения и студентов
по направлению 270100.62 «Строительство»
в области «Теплогазоснабжение и
вентиляция».

Булдакова И. Н. (составление), 2008

Издательство ИжГТУ, 2008

Сонник — Чувства и состояния во сне

Радоваться во сне – уверенность в своих делах. Неистово радоваться – к печали. Смеяться — цели не добиться. Неудержимо смеяться – к печали. Любопытствовать во сне – берегись легковерия. Сильное волнение чувствовать – стремиться к ясному самосознанию. Плакать во сне — к радости и ко всему хорошему. Чувствовать себя обиженным — споры с близкими. Раскаяние переживать – твой советчик прав. Раздражение чувствовать – хороший друг поможет. Чувствовать возмущение – жить в мире, но в неблагоприятном окружении

Отвращение к людям – необходима осторожность. Отвращение к предметам – у тебя не в порядке желудок

Чувствовать зависть – верное сердце не может тебя забыть. Жалость — у тебя есть право на спокойную совесть. Злобу — верность, радостный день предстоит. Неистовствовать в гневе – маленькое заблуждение будет для тебя иметь тяжелые последствия. Месть во сне осуществить – долго не можешь добиться справедливости. Страх во сне — опасность от радостных надежд. Тайные заботы, которые гонишь днем, опасность от того, что ты любишь. Чувство вины, навязчивые идеи. Стыд и позор во сне – берегись доверять другим, помехи от собственной несдержанности в чувствах. Оклеветанным быть – берегись необдуманно разгласить тайну. Судиться во сне – тебя высмеют. Опаздывать во сне – близкая смерть. Лениться во сне, равнодушным быть – к печали, утрате. Скупым быть во сне, жадничать – предстоит пережить ужас. Жестоким быть во сне — предстоит бросить родной очаг.

Технические расчеты бесплатно и анонимно =)

  • Отопление
    • Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004
    • Расчет диаметра коллектора
    • Расчет расширительного бака для отопления
    • Расчет количества ступеней теплообменника ГВС
    • Расчет нагрева ГВС
    • Расчет длины компенсаторов температурных удлинений трубопроводов
    • Расчет скорости воды в трубопроводе
    • Разбавление пропилен и этиленгликоля
    • Расчет диаметра балансировочной шайбы
    • Проверка работоспособности элеваторной системы отопления
    • кг/с в м3/ч. Перевод массового расхода среды в объемный.
    • Онлайн замена радиаторов Prado на Purmo
    • Примеры гидравлических расчетов систем отопления
    • Sanext
      • Расчет диаметра и настройки клапана Sanext DPV
      • Расчет этажного коллектора системы отопления Sanext
      • Маркировка РКУ Sanext
      • Замена клапана Danfoss AB-QM на Sanext DS
      • Быстрая замена L и T-образных трубок на трубу Стабил
  • Вентиляция
    • Расчет гравитационного давления
    • Расчет расхода воздуха на удаление теплоизбытков
    • Расчет теплоснабжения приточных установок
    • Расчет осушения помещений по методике Dantherm
    • Расчет эквивалентного диаметра и скорости воздуха в воздуховоде
    • Расчет дымоудаления с естественным побуждением
    • Расчет площади воздуховодов и фасонных частей онлайн
    • Расчет естественной вентиляции онлайн
    • Расчет потерь давления на местных сопротивлениях
    • Расчет воздушного отопления совмещенного с вентиляцией
    • Расчет вентиляции в аккумуляторной
    • Расчет температуры приточного и вытяжного воздуха системы вентиляции
    • Расчет углового коэффициента луча процесса
    • Кратности воздухообмена и температуры воздуха
    • Расчет количества облучателей-рециркуляторов медицинских по Р 3.5.1904-04
  • Кондиционирование
    • Расчет мощности кондиционера по теплопритокам в помещение
    • Расчет теплопритоков от солнечной радиации. Инсоляция помещения.
    • Расчет теплопоступлений от источников искусственного освещения
    • Расчет теплопоступлений от оборудования
    • Расчет теплопоступлений от людей
    • Расчет теплопритоков и влаги от остывающей еды
    • Расчет теплопоступлений от инфильтрации воздуха
    • Расчет полной теплоты из явной теплоты
  • Водоснабжение
    • Расчет сопротивления в трубопроводе ВК
    • Расчет глубины промерзания грунта
    • Расчетные расходы дождевых вод
  • Газоснабжение
    • Технико-экономический расчет тепла и топлива
    • Расчет диаметра газопровода
    • Расчет теплотворной способности энергоносителей
  • Смета
    • Расчет площади окраски металлического профиля
    • Расчет площади окраски чугунных радиаторов
    • Расчет расхода теплоизоляции с учетом коэффициента уплотнения
    • Расчет количества досок из кубометра древесины
    • Примеры смет
      • Пример сметы на авторский надзор
      • Пример сметы на перебазирование техники
      • Пример расчета коэффициента к ФОТ при сверхурочной работе.
      • Пример расчета коэффициента к ФОТ при многосменном режиме работы.
      • Пример расчета коэффициента к ФОТ при вахтовом методе работы.
      • Списание материалов в строительстве. Пример формы отчета.
      • Списание материалов в строительстве. Пример формы ведомости.
  • Разные
    • Конвертер технических величин
    • Проверка показаний теплосчетчика онлайн
    • Расчет категории склада для хранения муки
    • Линейная интерполяция онлайн
    • Онлайн расчет маржинальности и точки безубыточности
    • НДС калькулятор онлайн, расчет %
    • Юнит-экономика онлайн калькулятор
    • Онлайн калькулятор стоимости покупки автомобиля по зарплате и доходу семьи
    • Расчет стоимости системы учета энергоресурсов
    • Винный калькулятор
    • Закон Ома
    • Расчет фундамента
    • Статьи
      • Нормы
      • Сравнение типов отопительных приборов
      • Настройка AutoCAD
      • Температура воздуха в Краснодаре за 10 лет зимой
      • Сравнение ИП с ООО
  • Вход

Теплопоступления от электрических печей.

Эти теплопоступления рассчитывают как долю от установочной электрической мощности Nуст., указываемой в каталоге (иногда эту величину называют «мощность холостого хода»).

Максимальные теплопоступления имеют место от прогретой, находящейся в режиме стационарной теплопередачи, печи. В этот период электрическая мощность будет расходоваться на восполнение тепловых потерь печи и, именно её назвали мощностью холостого хода.

Для определения тепловыделений в помещение от электрических печей существует несколько способов:

по мощности холостого хода Nxx, кВт

Qэлектрических печей = 1000 Nx.x., Вт;

по доле П% от номинальной электрической мощности печи, расходуемой на тепловые потери печью:

Qэлектрических печей = 1000 (П/100)Nуст, Вт.

Если указанные величины неизвестны, ориентировочно теплопоступления можно определить по назначению печи.

Далее в таблице указаны значения величин тепловыделений в Вт на 1 кВт установочной мощности для печей различного назначения.

Тип электрической печи Значение α
Камерные, шахтные, методические 200
Колокольные 130
Муфельные 150
Печи-ванные 400
Печи, без указания типа 250

Теплопоступления определяют как:

Qэлектрических печей = α × Nуст, кВт

где: Nуст – установочная электрическая мощность печи,  кВт.

Расчет тепловой мощности

Для оценки тепловой энергии существует формула определения мощности через количество теплоты: N = Q/Δ t, где Q – это количество теплоты, выраженное в джоулях, а Δ t – время выделения энергии в секундах.

При оценочных расчетах также используется специальный коэффициент (КПД), указывающий на объем израсходованного тепла. Он находится как отношение полезной энергии к мощности тепловых потерь и выражается в процентах.

Более точный тепловой расчет

Грамотный выбор нагревательного оборудования возможен лишь после ознакомления с порядком расчета тепловой мощности, требуемой в каждом конкретном случае. Формула, используемая для его точного определения, выглядит так: P=V∆TK= ккал/час:

  • V – объем обогреваемого помещения, измеряемый в метрах кубических.
  • ∆Т – разница между температурой воздуха вне и внутри помещения.
  • К – коэффициент потерь тепла.

Последняя величина зависит от материала стен. На основании проведенных специалистами измерений для неутепленной деревянной конструкции она составляет 3,0-4,0. Точные значения К для различных вариантов утепления приведены ниже:

  • Для зданий из одинарной кирпичной кладки и с упрощенными конструкциями окон и крыши (так называемая “простая” теплоизоляция) К=2,0-2,9.
  • Утепление среднего качества (К=1,0-1,9). Это типовая конструкция, под которой понимается двойная кладка, крыша с обычной кровлей, ограниченное количество окон.
  • Высококачественное утепление (К=0,6-0,9), предполагающее кирпичные стены с усиленной теплоизоляцией, малое число окон со сдвоенными рамами, прочное основание пола и крышу с надежными теплоизоляторами.

В качестве примера будет рассмотрен точный расчет мощности для нагреваемого помещения объемом 5 х 16 х 2,5 = 200 метров кубических. ∆Т определяется как разница показателя снаружи -20 °С и внутри помещения +25 °С. Принимается вариант со средней удельной теплоизоляцией (К=1-1,9). По усредненным условиям эксплуатации берем 1,7. Рассчитываем: 200 х 45 х 1,7 = 15 300 ккалчас. Исходя из того, что 1 кВт = 860 ккалчас, в итоге имеем: 15 300860 = 17,8 кВт.

Первый закон термодинамики

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ​\( Q=A’\,(T=const, \Delta U=0) \)​Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: \( Q=\Delta U+A’ \)​Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: \( Q=\Delta U\,(V=const, A’=0) \)​Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​\( \Delta U=-A’ \)​ или ​\( A=\Delta U\,\mathbf{(Q=0)} \)​Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​\( (\Delta U=0) \), при записи которого в выражении ​\( Q =cm(t_2 – t_1) \)​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​\( Q = 0 \)​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​\( Q = \Delta U + A \)​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​\( А= -\Delta U \)​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​\( A=\Delta U \)​;
  • найти выражения для ​\( \Delta U \)​ и ​\( A \)​;
  • подставить в исходное уравнение вместо \( \Delta U \) и \( A \) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Диапазон температур

Для нормальной жизнедеятельности человека крайне важна терморегуляция. Температура тела здоровых людей находится в узком диапазоне от 36.0 до 37.0 по Цельсию. Резкое снижение или увеличение данных значений обычно приводит к летальному исходу.

На жаре человек интенсивно потеет. Потеря жидкости таким способом приводит к обезвоживанию, иногда довольно серьезному. Вместе с потом организм покидают витамины и минеральные вещества. Из-за дегидратации кровь становится гуще, нарушается обмен веществ. Нормальная потеря воды во время потоотделения – до трех процентов от общей массы тела. Если это значение перевалило за шестипроцентный барьер, страдают когнитивные функции. Для смертельного исхода достаточно двадцати процентов. Кроме того, существует еще одна опасность. Во время длительного пребывания на солнце организм накапливает больше тепла, чем отдает в окружающую среду, и по закону термодинамического равновесия постепенно тело человека нагревается до температуры воздуха, то есть до 39-41 градуса Цельсия. Это влечет за собой тепловой удар и потерю сознания. Сердечно-сосудистая система тоже работает на износ: пульс учащается, давление повышается, кровь с трудом проходит по сосудам.

Переохлаждение не менее опасно для человека. На холоде сосуды организма сужаются, что вызывает ишемию тканей. И если воздействие холодной температуры длительное, то возможно отмирание участков кожи или мышц. Низкие температуры влияют и на обмен веществ, который совершается в несколько раз быстрее, так как организму нужна энергия для обогрева.

Теплообмен человека в помещении

Создание
оптимально комфортных условий для
промышленных и административных зданий
представляет собой важную задачу, от
решения которой зависит нормальная
жизнедеятельность населения страны.

Протекающие
в организме человека метаболические
процессы, связанные с выделением энергии
в виде тепла и работы мышц, зависят от
следующих факторов: объема помещения,
приходящегося на одного человека,
степени тяжести выполняемого труда и
от количества потребленного кислорода.
Известным исследователем параметров
комфорта Оле Фангером предложена формула
теплового равновесия между человеком
и окружающей средой.

(1.1)

М- количество
тепла, вырабатываемое организмом, Вт/м²

W-объем
произведенной механической работы, Вт/
м²


общее количество тепла, выделяемое при
дыхании, Вт/ м²

— общее количество тепла, отводимое
через кожу, Вт/
м²

Процесс
теплообмена между организмом и внешней
средой состоит из переноса тепла от
внутренних областей тела к поверхностному
слою и переноса тепла от поверхности
тела в окружающую среду. Передача тепла
от внутренних органов к периферическим
тканям зависит от скорости кровотока
в сосудах, температурной разности между
тканями и кровью, размера кровеносных
сосудов и поддерживается на уровне
36,6-36,8ºС.

Передача
тепла с поверхности кожи человека в
окружающую среду подчиняется общим
законам теплопередачи и определяется:

— при лучистой
теплоотдаче

Вт (1.2)


коэффициент лучистого теплообмена, Вт/
м² ·ºС

—поверхность
человека, участвующая в теплообмене
излучением, м²


средняя температура поверхности тела
одетого человека, ºС


средняя радиационная температура
помещения, ºС

-при
конвективной теплоотдаче

Вт
(1.3)


коэффициент конвективного теплообмена,
Вт/ м² ·ºС


поверхность тела человека, участвующая
в теплоотдаче конвекцией, м²


температура воздуха в помещении, ºС

-при
теплоотдачи испарением

Вт
(1.4)

r-
скрытая теплота испарения, кДж/кг

g-
влаговыделение человека, г/с

Испарение
влаги с поверхности тела человека
осуществляется за счет разности
парциальных давлений водяных паров в
насыщенном парами слое у поверхности
тела и в воздухе помещения. Теплоотдача
испарением будет тем больше, чем ниже
значение относительной влажности
воздуха при данной температуре в
помещении.

У человека
в условиях температурного комфорта при
температуре воздуха 20ºС и относительной
влажности 40-60%, излучением отводится
около 60 Вт, конвекцией — 30 Вт и испарением
27 Вт теплоты. Теплоотдача конвекцией и
радиацией зависит от температуры
поверхности кожи человека, которая в
норме составляет около 33 ºС. Если
температура окружающей среды повышается
до 35-36ºС и выше, отдача тепла возможна
лишь путем испарения. Для теплообмена,
кроме температуры воздуха, имеют значения
скорость его движения и влажность. При
высокой температуре и влажности воздуха
затрудняется процесс потоотделения,
кожа человека набухает, а при высокой
влажности и низкой температуре усиливается
отдача тепла в окружающую среду, что
вызывает озноб. Если температура
поверхности кожи человека опускается
ниже 28 ºС, это приводит к летальному
исходу, вследствие некомпенсированного
отвода теплоты из организма.

Для определения
температуры теплового комфорта тела
можно воспользоваться соотношением

(1.5)

— средняя температура поверхности кожи
ºС ;

– температура воздуха окружающей среды
ºС;

C- постоянный коэффициент

Для условий
теплового комфорта коэффициент Cпринимают равным 0,8. ПриC=0,8-0,9
тепловое состояние человека оценивается
как нормальное и характеризуется потерей
влаги потоотделением, при значенияхC<0,67 возникает переохлаждение
человека.

Для
нормальной жизнедеятельности человека
необходимо поддерживать тепловой баланс
между его организмом и окружающей
средой, обеспечивать комфортное тепловое
состояние отдельных частей тела.

Полезные советы

  1. Откройте шторы – впустите в свою квартиру солнце! В светлое время суток при ясной погоде это поможет поднять температуру на пару градусов.
  2. Постелите на пол ковер – это отличная преграда для холодного воздуха и дополнительный слой изоляции.
  3. Оставьте открытой дверь в ванную комнату после водных процедур – теплый воздух, наполнит соседние помещения и сделает их немного теплее.
  4. Используйте вентилятор – направьте поток воздуха на радиатор, это поможет быстрее теплу распространиться по комнате.
  5. Не спешите закрывать духовку после приготовления ужина – используйте теплый воздух для обогрева кухни.
  6. Закрывайте межкомнатные двери – не стоит позволять уйти теплу в комнату, в которой никто не находится.

Зима не за горами. Подготовка жилья к суровым морозам поможет комфортно пережить этот период без дополнительных нежелательных трат. А как Вы готовитесь к зиме?

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

Техническое устройство электрокотлов отопления и их виды

На данный момент существуют два типа электрокотлов:

Чаще всего для того, чтобы отапливать частные дома, используются котлы первого варианта, так как они не занимают много места и удобные в эксплуатации. Напольные обычно имеют мощность в 380 вольт и применяются на крупных производствах, не подключенных к централизованному отоплению. Строение таких агрегатов крайне простое, и состоят они всего из нескольких узлов:

Так называют бак, в котором находятся несколько ТЭНов (трубчатых электронагревателей) с блоками нагревателей, разогревающих жидкость в отопительной системе.

За счет блока управления можно регулировать мощность котла, тем самым увеличивая или понижая температуру в системе отопителя.

Данные узлы являются основными и присутствуют абсолютно во всех электрокотлах. Однако, это далеко не все оборудование, которое может находиться внутри данного устройства. Отопители от разных производителей могут содержать в себе дополнительные узлы, упрощающие работу с приборами, а также улучшающие их параметры. К ним относятся:

Данный узел необходим на тот случай, если в системе внезапно начнет повышаться давление. Обычно наполнен воздухом, однако, при повышенном давлении входной клапан бака открывается, и жидкость устремляется в специальную резиновую камеру внутри данного резервуара, благодаря чему во всей системе понижается давление.

Обычно отопители с насосами используются при необходимости прогонять жидкость по крупным отопительным системам, где жидкости трудно циркулировать только при помощи конвекции.

Электрические котлы могут оснащаться специальными платами, благодаря которым системе можно задать определенную температуру или другие параметры, которые будут поддерживаться в автоматическом режиме.

При покупке стоит учесть, что котлы, использующиеся для отопления, являются одноконтурными. Это означает, что они могут использоваться только для работы в замкнутой системе. Использовать их в качестве нагревателей для проточной воды смысла нет никакого, ведь для этого есть отдельные, специальные накопительные или проточные системы.

Если же необходимо найти котел не только для отопления, но и для обеспечения дома источником горячей воды — то стоит задуматься о приобретении двухконтурной системы. Такой котел будет стоить дороже, однако он сочетает в себе сразу 2 устройства: водонагреватель и отопитель.

В современных системах в качестве теплообменника могут использоваться не только ТЭНы. Все чаще можно встретить отопители, использующие для нагрева носителя индукционный ток. В таких системах жидкость нагревается в результате передачи тепла от металлических стенок трубок, по которым она течет. Они, в свою очередь, нагреваются от того, что на них воздействует электромагнитное поле, исходящее от катушек, установленных на котел. Такая замена происходит по простой причине: оборудование с таким способом передачи тепла жидкости стоит на порядок дешевле, да и служит несколько дольше. Кроме того, в отличие от ТЭНовых приборов, в них практически отсутствует накопитель. Однако, есть и подводные камни, например, для обслуживания таких систем требуются определенные навыки, которыми обладают только квалифицированные специалисты.

Так же можно найти и электрокотлы электродного типа. В них нагрев жидкости происходит за счет подачи тока, который проходит сквозь нее между установленными внутри котла электродами. Такие отопители считаются наиболее безопасными, однако имеют ряд своих минусов, главный из которых заключается в том, что электроды не долговечны, и их время от времени приходится заменять на более новые.

Расчет тепловой мощности

Выполнить точные вычисления по системе отопления затруднительно для неспециалиста, но упрощённые способы позволяют рассчитать показатели неподготовленному человеку. Если производить расчеты «на глаз», может получиться, что мощности котла или нагревателя не хватает. Или, наоборот, из-за избытка вырабатываемой энергии придётся пускать тепло «на ветер».

Способы самостоятельной оценки характеристик отопления:

  1. Использование норматива из проектной документации. Для Московской области применяется величина 100-150 Ватт на 1 м². Площадь, подлежащая обогреву, умножается на ставку — это и будет искомый параметр.
  2. Применение формулы расчета тепловой мощности: N = V × Δ T × K, ккал/час. Обозначения символов: V — объём комнаты, Δ T — разница температур внутри и снаружи помещения, K — коэффициент пропускания тепла или рассеивания.
  3. Опора на укрупнённые показатели. Метод похож на предыдущий способ, но используется для определения тепловой нагрузки многоквартирных зданий.

Значения коэффициента рассеивания берут из таблиц, пределы изменения характеристики от 0,6 до 4. Примерные величины для упрощённого расчёта:

Материал стен К-т пропускания тепла
Неутепленный металлопрофиль 3―4
Доска 50 мм 2,5―3,5
Кладка в 1 кирпич с минимальной изоляцией 2―3
Стандартное перекрытие, двери и окна, перегородка в 2 блока 1―2
Стеклопакеты, керамитовый контур с теплоизолом 0,6―0,9

Пример расчета тепловой мощности котла для помещения 80 м² с потолком 2,5 м. Объём 80 × 2,5 = 200 м³. Коэффициент рассеивания для дома типовой постройки 1,5. Разница между комнатной (22°С) и наружной (минус 40°С) температурами составляет 62°С. Применяем формулу: N = 200 × 62 × 1,5 = 18600 ккал/час. Перевод в киловатты осуществляется делением на 860. Результат = 21,6 кВт.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий