Словарь по квантовой физике

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют – сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и диэлектрическая проницаемость среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

«Правилом правой руки» называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал направление тока, а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая электродвижущая сила индукции тем больше, чем больше скорость изменения магнитного потока.

В словаре Энциклопедии

(греч. ta physika, от physis — природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля. Физика начала развиваться еще до н. э. (Демокрит, Архимед и др.); в 17 в. создается классическая механика (И. Ньютон); к кон. 19 в. было в основном завершено формирование классической физики. В нач. 20 в. в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В 20-е гг. была разработана квантовая механика — последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение о пространстве и времени — теория относительности (А. Эйнштейн), физика делается релятивистской. Во 2-й пол. 20 в. происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, И. Н. Боголюбов и др.). Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (Н. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация и др. возникли и развились в результате достижений физики.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Наблюдения и опыты

Человеку свойственны любопытство, интерес. Люди всегда пытались понять и объяснить окружающий их мир, но объяснение должно быть научно, т.е. должно опираться на физические теории и законы. Как же открываются законы, и создаются теории? Первый этап поиска научной истины называется научным наблюдением.

Процесс наблюдения (Источник unsplash.com)

Процедура наблюдения содержит разнообразие методов, приводящих к истине:

()

Ученые тщательно наблюдают за определенным явлением, изучают его закономерности, формы проявления. Солнечные затмения, землетрясения, грозы, появления необычных небесных тел — комет в далеком прошлом пугали людей, заставляли их задумываться о существовании потусторонней силы. Ученые с помощью наблюдений определили причины и условия протекания этих процессов и заставили реально посмотреть на эти природные «чудеса».

Но для полного понимания происходящего нужно перейти ко второму этапу – опытному. Опыт позволяет воссоздать природное явление в лаборатории ученого.

()

Лишь после этого создается теория – третий заключительный этап поиска истины.

Работая над созданием теории, ученые вводят различные физические величины, которые характеризуют изучаемое явление, например, время, длина, масса. Правильное и точное измерение величин играет большую роль в выработке правильного вывода. Для этого нужны специальные приборы: часы, линейка или сантиметровая лента, весы и т. д.

Между измеренными величинами устанавливаются определенные связи, которые являются закономерными и называются физическими законами. Законы, описывающие общую группу явлений, образуют физическую теорию.

Вот пример рождения одной из теорий. На что реагирует человек прежде всего? Конечно, на движущиеся предметы. Наблюдая за движением птиц, животных, небесных тел, за падением капель дождя и снега, человек задумывается о причинах, которые заставляют двигаться тела. Он сравнивает движение разных тел, находит сходство и различие в их движении.

Ученые, жившие еще до нашей эры, Аристотель, Архимед и другие положили начало учению о движении, основываясь на наблюдениях. Но одни наблюдения не могли точно и верно объяснить движение тел.

В XVI – XVII веках ученые переходят к экспериментальным методам. Результатом опытов Х. Гюйгенса, Г. Галилея, Р. Декарта, И. Кеплера и многих других ученых стали законы, описывающие падение тел, движение планет Солнечной системы, поведение тел при столкновениях.

Достигнутые опытным путем результаты, получили завершение в работах великого английского ученого-физика Исаака Ньютона (1643 — 1727 г.г.), создавшего теорию классической механики, науки о движении. Но и гениальный Ньютон не до конца рассмотрел особенности движения тел. В XX веке Альберт Эйнштейн (1879 – 1955 г.г.) создает теорию движения, которая механику Ньютона включает в себя как частный случай.

, , ,  

И это еще не все. Пока не изучены еще звездные миры, до которых надо добраться. Но как? Это вопрос будущего. И ответ на этот вопрос, может быть, даст еще одна теория движения.

Сложен путь решения загадок, которые ставит перед человеком природа. Но учиться распутывать и разгадывать их нужно правильно, как это делает наука физика:

  • Наблюдение – начало поиска научной истины;
  • Опыт – практическое открытие или подтверждение результатов наблюдений;
  • Научная теория – завершенное доказательство научной истины.

И главная задача физики: открыть физические законы, по которым протекают различные явления; найти закономерности, сравнить и обобщить результаты; объяснить причины явлений и процессов, предположить их развитие; использовать эти законы в жизни и деятельности человека.

Законам физики подчиняется все, что находится во Вселенной.

Экспериментальная и теоретическая физика

В своей основе физика является экспериментальной наукой: все ее теории и законы опираются и основаны на опытных данных. Но, несмотря на это, именно новые теории – основная причина проведения новых экспериментов, в результате осуществления которых лежат новые открытия. Поэтому принято различать теоретическую и экспериментальную физику.

В основе экспериментальной физики лежит исследование явлений природы в тех условиях, которые были подготовлены заранее. В задачи данного вида физики входит обнаружение явлений, которые не были известны ранее, а также опровержение или подтверждение физических теорий. В физике большинство достижений были сделаны благодаря экспериментальному обнаружению физических явлений, которые не описываются существующими теориями.

Экспериментальное изучение фотографического эффекта стало одной из предпосылок создания квантовой механики.

Замечание 1

Хотя научным рождением квантовой механики считается появление гипотезы Планка, который выдвинул ее для разрешения ультрафиолетовой катастрофы, что была парадоксом классической теоретической физикой излучения.

Задачами теоретической физики являются формулировка общих природных законов, объяснение их на основе различных природных явлений, а также прогнозирование неизведанных до сих пор процессов. Достоверность физической теории можно проверить экспериментально: если его результаты совпадают с прогнозами теории, то она считается адекватной и точно описывающей конкретное явление. При изучении каждого явления или процесса одинаково важны и теоретическая, и экспериментальная физика.

Прикладная физика

Физика с самого своего рождения имела огромное прикладное значение, она развивалась вместе с механизмами, машинами, которые человечество использовало для своих нужд. Физика часто применяется в инженерных науках, большинство физиков были изобретателями. Механика, как раздел физики, была тесно связана с сопротивлением материалов и с теоретической механикой, как с главными инженерными науками.

Термодинамика связана с конструированием тепловых двигателей и теплотехникой. Электричество напрямую связано с электроникой и электротехникой, для развития и становления которой были важны исследования в сфере физики твердого тела. Благодаря достижениям ядерной физики возникла ядерная энергия. Данный список можно продолжать долго.

Также физика имеет широкие междисциплинарные связи. На границе химии, физики и инженерных наук возникает и быстро развивается такая отрасль, как материаловедение. Химией используются инструменты и методы, что приводит к становлению двух исследовательских направлений: химической физики и физической химии.

Широких оборотов набирает биофизика, которая является областью исследований на границе между физикой и биологией, в которой все биологические процессы рассматриваются из атомарной структуры органических веществ. Геофизика изучает геологические явления и их физическую природу. Медицина применяет такие методы, как ультразвуковое исследование и рентгеновское облучение. Ядерный магнитный резонанс используется для диагностики, лазеры – для лечения глазных заболеваний, а ядерное облучение – в онкологии.

Какие профессии связаны с физикой

Увлекаешься физикой и хочешь, чтобы твоя будущая профессия была связана с этим предметом? Скажем сразу, выбор специальностей огромный. Ведь физические процессы протекают как внутри, так и вокруг человека. Подобрали несколько направлений, где ты сможешь реализовать себя.

Преподаватель

Эта профессия подойдёт тем, кто любит помогать другим и умеет просто и занимательно объяснять суть физических явлений. Хорошие преподаватели нужны в школе, колледже, лицее, вузе, на курсах.

К слову, выпускники педагогических классов могут поступать без экзаменов на специальность «Физика и информатика» (БГПУ имени Максима Танка, БрГУ имени А.С. Пушкина, МГПУ имени И.П. Шамякина, МГУ имени А.А. Кулешова).

Физик (с дополнительной специализацией)

Работа физика во многом связана с наукой, исследованием тайн природы.

Широкий выбор подходящих специальностей представлен на физическом факультете БГУ: научно-исследовательская, производственная, управленческая деятельность, работа с наноматериалами и нанотехнологиями, ядерная физика. Присмотрись, какая сторона тебя привлекает больше. Например, руководить коллективом учёных или работать на производстве.

Медицинский физик

Специалист по медицинской физике изучает приборы, оборудование, а также физические факторы, которые используются для диагностики и лечения пациентов. Эта профессия сочетает в себе научную деятельность и работу с людьми, медперсоналом в частности.

Кибернетик-экономист

Экономическая кибернетика возникла на стыке математики, кибернетики и экономики. Она рассматривает экономику как сложную систему, в которой протекают информационные процессы.

Инженер

Профессия инженер востребована во всех сферах деятельности, отчего так много различных специализаций: «Инженер-энергетик», «Инженер-программист», «Инженер-химик», «Инженер-технолог», «Инженер-экономист» и т. д.

Вот где будет развернуться любителям физики! Если в тебе есть изобретательская жилка, ты усидчив и обладаешь техническим складом ума, обрати внимание на инженерные специальности. Инженер может заниматься не только строительством зданий, дорог, машин, но и разрабатывать производственный процесс, технологию

Инженер может заниматься не только строительством зданий, дорог, машин, но и разрабатывать производственный процесс, технологию

IT-специалист

В своём интервью для Адукар Леонид Лознер отметил, что настоящие профессионалы в сфере IT обладают глубокими знаниями по математике и физике. К слову, чтобы отучиться на программиста или гейм-дизайнера в Беларуси, нужно сдать ЦТ по математике и физике. Однако знания по физике пригодятся не только для подготовки к ЦТ, но и в работе.

Разнообразные технические и IT-специальности представлены в БГУИР, где в 2019 году планируется увеличить план набора на бюджет.

Обрати внимание на второй и профильный предмет специальности

Это важно, потому что минимальный балл ЦТ для них отличается. В 2018 году по физике как первому профильному предмету нужно было набрать минимум 20 баллов и 10 баллов как по второму

В 2018 году по физике как первому профильному предмету нужно было набрать минимум 20 баллов и 10 баллов как по второму

Чтобы подобрать специальность, связанную с физикой, заходи в каталог вузов Адукар, во вкладке «Экзамены» выбирай физику и изучай предложения университетов Беларуси.

Предмет и значение физики в современном мире

Физика – это наука о естествознании, в общем смысле слова является частью природоведения. Предметом ее изучения является материя, в виде полей и вещества, а также общие формы ее движения. Также к предмету изучения физики можно отнести фундаментальные природные взаимодействия, которые управляют движением материи.

Общими для всех материальных систем являются некоторые закономерности, которые называются физическими законами. Часто физику называют фундаментальной наукой, поскольку иные естественные науки (биология, химия, геология) описывают только конкретные классы материальных систем, которые подчиняются физическим законам.

Предмет изучения химии – атомы, вещества, что состоят из них, а также превращение одних веществ в другие. Химические свойства любого вещества определяются физическими свойствами молекул и атомов, которые описываются в таких разделах физики, как электромагнетизм, термодинамика и квантовая физика.

Физика тесно связывается с математикой, поскольку она представляет механизм, при помощи которого физические законы могут формулироваться максимально точно. Все физические законы практически всегда формулируются в виде уравнений. Причем в данном случае используются наиболее сложные разделы математики, нежели в других науках. И наоборот, потребностями физической науки стимулировалось развитие большинства областей математики.

Значение физики в современном мире очень велико. Все, чем отличается нынешнее общество от общества прошлых столетий, возникло в результате применения физических открытий.

Исследования в сфере электромагнетизма привели к возникновению стационарных и мобильных телефонов. Благодаря открытиям термодинамики получилось создать автомобиль, а развитие электроники спровоцировало возникновение компьютерной техники. Фотоника дает возможность создать принципиально новые компьютеры и фотонную технику, которые стремительно замещают современную электронную технику и приспособления. А развитие газодинамики дало рождение самолетам и вертолетам.

Знание физических процессов, которые постоянно происходят в природе, углубляются и расширяются. Большая часть новых и современных открытий получает технико-экономическое применение, зачастую в промышленности.

Перед современными исследователями регулярно возникают новые задачи и загадки – всплывают явления, для объяснения которых необходимо разрабатывать новые физические теории. Несмотря на большой опыт приобретенных знаний, современная физика еще далека от того, чтобы объяснить все природные явления.

Общие научные основы методов физики разрабатываются в методологии науки и в теории познания.

Неизвестное слово «СИ»

При изучении физики приходится решать очень много расчетных, количественных, задач, где используются единицы измерения различных физических величин. Эти единицы измерения переводятся в общепринятую международную систему единиц измерения – СИ. Широко используются такие привычные единицы, как литр, минута, час, тонна, гектар и другие. Но, решая задачи по физике, нужно и их уметь переводить в систему интернациональную (СИ). Почему? Развернутый ответ на это вопрос здесь:

Что общего в следующих обозначениях: аршин, фут, кабельтов, сажень?

Что объединяет штоф, галлон, пинту, кварту, четверть, баррель?

Сразу очень непросто дать ответ на эти вопросы. Нужно быть неплохим эрудитом для этого. Первый набор слов обозначает единицы длины, а второй – единицы объема.

До 1960 года положение в обозначении физических величин было катастрофическим. Одни и те же физические величины по-разному обозначались не только в различных науках, но и в различных разделах физики. Одна и та же величина имела от 10 до 20 и более единиц измерения. А если учесть, что в разных странах тоже имелись свои единицы измерения, то получалась полнейшая неразбериха. Помнится история Вавилонской башни, которую не могли достроить, так как строители, начав говорить на разных языках, перестали понимать друг друга. Эта же история назревала и в мире физических единиц измерения.

Без измерения нельзя обойтись в любой сфере практической деятельности человека. В производственной и научной практике приходится измерять более 2 тысяч различных величин. Кроме того, возросли требования к точности измерения, ведь в те годы развивались такие отрасли, как кибернетика, электроника, космическая техника. Необходимо было решить противоречие: много очень точных измерений физических величин необходимо человечеству, но делались эти измерения в различных единицах, которые очень сложно сводить друг с другом.

Решением этой проблемы явилось введение единого универсального языка для измерения физических величин, понятного для всех стран. Таким языком стала Международная система единиц физических величин, разработанная ведущими специалистами ряда стран и утвержденная в 1960 году XI Генеральной конференцией по мерам и весам. Сокращенно эту систему называют СИ – система интернациональная.

В основе СИ – 7 основных единиц (см. таблицу) и 2 дополнительные (радиан и стерадиан, изучаются в старших классах школы). Все другие физические единицы СИ называются производными. Они образованы основными и дополнительными единицами.

()

Над единицами величин производятся математические действия. Следует запомнить некоторые правила работы с ними:

  • Складывать и вычитать можно только однородные физические единицы;
  • Физические единицы можно умножать и делить;
  • Однородные физические единицы можно взаимно сокращать.

Сложные комбинации физических единиц называют в честь великих ученых, внесших большой вклад в определение этих величин. Причем сами единицы пишутся с маленькой буквы, а их сокращенные обозначения – с большой, например, 12 ньютонов и 12 Н.

Для измерения малых и больших величин применяются дольные и кратные приставки к основным единицам. Например, приставки милли (м) и микро (мк) обозначают тысячную и миллионную доли, а кило (к) и мега (М) в тысячу и миллион раз большую.

     2 км = 2 000 м;

     3 кг = 3 000 г;

     4 км = 4 000 000 мм;

     5 кг = 5 000 000мг;

     6 мм = 0,006 м;

     7 мг = 0,007 г;

     8 мкм = 0,00000 м;

     9 мкг = 0,000009 г.

Изучая старинные единицы измерения длин, масс, площадей, объемов, можно перевести их в систему СИ с помощью справочников и наглядно представить эти физические величины.

Словарь

Меры длины:

1. Аршин – 1) величина, равная 0, 7112м. 2) деревянная узкая дощечка с делениями.

2. Фут – (в пер. с англ. значит «ступня»). 1 фут = 30 см 48 мм.

3. Кабельтов – 1) в мореплавании (185,2 м). 2) в артиллерии (182,87 м). 3) Специальный трос для швартовки.

4. Сажень – часто использовалась на Руси. По сведениям истории, названий саженей больше 10, между собой они никак не связаны. Простая сажень – 150,8 см.

Меры объема:

5. Штоф – одна десятая часть ведра, равная десяти чаркам – это примерно 1,23 л. Введен в петровские времена для алкогольных напитков.

6. Галлон — мера жидких и сыпучих тел в Англии, равная 4,5 л; в США — 3,7 л (для жидких тел) и 4,4 л (для сыпучих тел).

7. Пинта – исторически принятая в странах английской системы мера объема жидкостей. Применяется редко в быту и торговле.1 пинта = 0,56 л.

8. Кварта – (с лат. «четверть») мера объема. Для сухих веществ 1 кварта = 1,1012 дм3, для жидких = 0,9463 дм3.

9. Четверть – на Руси мера объёма сыпучих тел. 1 четверть = 1.4 ведра = 3,08 л.

10. Баррель – 1) Единица объема, используемая в пивоварении. 2) Единица объема в производстве нефти. 1 баррель = 159 л.

Схожі:

Краткий словарь лингвистических терминов и понятий ( русско-украинско-англо-арабско-турецкий ) для студентов-иностранцев подготовительного отделенияКраткий словарь лингвистических терминов и понятий (русско-украинско-англо-арабско-турецкий) для студентов-иностранцев подготовительного… Краткий словарь лингвистических терминов и понятий ( русско-украинско-англо-арабско-турецкий ) для студентов-иностранцев подготовительного отделенияКраткий словарь лингвистических терминов и понятий (русско-украинско-англо-арабско-турецкий) для студентов-иностранцев подготовительного…
Краткий словарь лингвистических терминов и понятий ( русско-украинско-англо-арабско-турецкий ) для студентов-иностранцев подготовительного отделения Сумский государственный университетКраткий русско-украинско-англо-китайский словарь лингвистических терминов / Составители: Т. О. Дегтярева., О. П конек, Н. А. Тубол…
Словарь страховых терминов Актив страховщикаАктив страховщика имущество страховщика в денежном выражении (основные средства и внеоборотные активы, финансовые вложения, материалы,… Краткий словарь когнитивных терминов / Е. С. Куб­рякова, В. З. Демьянков, Ю. Г. Панкрац, Л. Г. Лузина / Под общей ред. Е. С. Кубряковой. М.: Филол ф-т мгу им. М. В. Ломоносова, 1996Метою курсу є детальне ознайомлення студентів з творчим доробком автора-класика англійської літератури та шляхом опрацювання вказаного…
М. Вече, 1998; аст. 512с. 2экз Вейзе А. АБольшой толковый словарь компьютерных терминов = Collins Dictionary of personal Computing : Рус англ.,англ рус. / Синклер Айен;Пер… Контрольная работа №1 Вариант 1 1-й уровень сложности (1 балл) Выберите правильный ответ Площадь обозначается: а) V; б) S; в) t; г) LВыпишите отдельно названия физических тел, веществ и физических явлений: колебание, столкновение, алюминий, шарик, полярное сияние,…
Гост 30319. 3-96 межгосударственный стандарт газ природный методы расчета физических свойств определение физических свойств по уравнению состояния межгосударственный совет по стандартизации, метрологии и сертификации минскРазработан всероссийским научно-исследовательским центром стандартизации, информации и сертификации сырья, материалов и веществ (вниц… Гост 30319. 1-96 межгосударственный стандарт газ природный методы расчета физических свойств определение физических свойств природного газа, его компонентов и продуктов его переработки межгосударственный совет по стандартизации,Разработан всероссийским научно-исследовательским центром стандартизации, информации и сертификации сырья, материалов и веществ (вниц…

Документи

Документи

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий